На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

24.16 Кривошип OA с противовесом B вращается с угловой скоростью ω0=const вокруг оси O неподвижной шестеренки и несет на конце A ось другой шестеренки того же размера, соединенной с цепью. Определить угловую скорость и угловое ускорение подвижной шестеренки, а также скорость и ускорение произвольной ее точки M, если длина кривошипа OA=l.

24.17 В эпициклической передаче ведущая шестерня радиуса R вращается против часовой стрелки с угловой скоростью ω0 и угловым ускорением ε0, кривошип длины 3R вращается вокруг ее оси по часовой стрелке с той же угловой скоростью и тем же угловым ускорением. Наити скорость и ускорение точки M ведомой шестерни радиуса R, лежащей на конце диаметра, перпендикулярного в данный момент кривошипу.

24.18 Даны два конических зубчатых колеса, оси которых неподвижны, а соответственные углы равны α и β. Первое колесо вращается с угловой скоростью ω1. Определить угловую скорость ω2 второго колеса и вычислить ее в том случае, когда α=30°, β=60°, ω1=10 об/мин.

24.19 Карусель представляет собой круглую площадку AB, которая вращается вокруг оси OC, проходящей через ее центр D, делая 6 об/мин, а ось OC вращается в том же направлении вокруг вертикали OE и делает 10 об/мин. Угол между осями α=20°, диаметр площадки AB равен 10 м, расстояние OD равно 2 м. Определить скорость v точки B в тот момент, когда она занимает самое низкое положение.

24.20 Шаровая дробилка состоит из полого шара II (в котором находятся шары и вещество, подвергающееся дроблению), сидящего на оси CD, на которой заклинено коническое зубчатое колесо E радиуса r. Ось CD сидит в подшипниках в раме I, составляющей одно целое с осью AB и приводящейся во вращение при помощи рукоятки G. Колесо E сцепляется с неподвижным колесом F радиуса R. Определить абсолютную угловую скорость шаровой дробилки, если рукоятка вращается с угловой скоростью ω0; угол между осями AB и CD равен α. Определить также абсолютное угловое ускорение шаровой дробилки, если угловая скорость рукоятки ω0=const.

24.21 Для растирания руды применяются бегуны в виде чугунных колес со стальными ободьями, катящимися по дну конической чаши. Бегуны вращаются вокруг горизонтальной оси AOB, которая в свою очередь вращается вокруг вертикальной оси OO1, составляющей с осью AOB одно целое. Найти абсолютные скорости точек D и E обода бегуна, принимая, что мгновенная ось вращения бегуна проходит через середину C линии касания обода бегуна с дном чаши. Скорость вращения вокруг вертикальной оси ωe=1 рад/с, ширина бегуна h=0,5 м. Средний радиус бегуна R=1 м, средний радиус вращения r=0,6 м, tg α=0,2.

24.22 Дифференциальная передача состоит из двух дисков AB и DE, центры которых находятся на их общей оси вращения; эти диски сжимают колесо MN, ось которого HI перпендикулярна оси дисков. Определить для колеса MN скорость v центра H и угловую скорость ωr вращения вокруг оси HI, если скорости точек касания колеса с дисками равны: v1=3 м/с, v2=4 м/с, радиус колеса r=0,05 м.

24.23 Сохранив условия предыдущей задачи и зная длину HI=^1/14 м, определить абсолютную угловую скорость и абсолютное угловое ускорение колеса MN.

24.24 Волчок A вращается относительно своей оси симметрии OB с постоянной угловой скоростью ω1 рад/с. Ось OB описывает равномерно конус. За одну минуту вершина волчка B делает n оборотов; ∠BOS=α. Найти угловую скорость ω и угловое ускорение ε волчка.

24.25 Круглый диск вращается с угловой скоростью ω1 вокруг горизонтальной оси CD; одновременно ось CD вращается вокруг вертикальной оси AB, проходящей через центр O диска, с угловой скоростью ω2. Вычислить величину и направление мгновенной угловой скорости ω и мгновенного углового ускорения ε диска, если ω1=5 рад/с, ω2=3 рад/с.

24.26 Диск радиуса R вращается с постоянной угловой скоростью ωr вокруг горизонтальной оси O1O2, которая в свою очередь вращается с постоянной угловой скоростью ωe вокруг вертикальной оси. Найти скорости и ускорения точек A и B, лежащих на концах вертикального диаметра диска.

24.27 Квадратная рама вращается вокруг оси AB, делая 2 об/мин. Вокруг оси BC, совпадающей с диагональю рамы, вращается диск, делая 2 об/мин. Определить абсолютную угловую скорость и угловое ускорение диска.

24.28 Ось мельничного бегуна OA вращается равномерно вокруг вертикальной оси Oz с угловой скоростью Ω. Длина оси OA=R, радиус бегуна AC=r. Считая, что в данный момент точка C бегуна имеет скорость, равную нулю, определить угловую скорость бегуна ω, направление мгновенной оси, подвижный и неподвижный аксоиды.

24.29 Дифференциальная передача состоит из конического зубчатого колеса III (сателлита), насаженного свободно на кривошип IV, который может вращаться вокруг неподвижной оси CD. Сателлит соединен с коническими зубчатыми колесами I и II, вращающимися вокруг той же оси CD с угловыми скоростями ω1=5 рад/с и ω2=3 рад/с, причем вращения происходят в одну сторону. Радиус сателлита r=2 см, а радиусы колес I и II одинаковы и равны R=7 см. Определить угловую скорость ω4 кривошипа IV, угловую скорость ω34 сателлита по отношению к кривошипу и скорость точки A.

24.30 В дифференциальном механизме, рассмотренном в предыдущей задаче, конические зубчатые колеса I и II вращаются в разные стороны с угловыми скоростями ω1=7 рад/с, ω2=3 рад/с. Определить vA, ω4 и ω34, если R=5 см, r=2,5 см.

24.31 При движении автомобиля по закругленному пути внешние колеса автомобиля, проходя больший путь, должны вращаться быстрее внутренних колес, проходящих меньший путь. Во избежание поломки задней ведущей оси автомобиля применяется зубчатая передача, называемая дифференциальной и имеющая следующее устройство. Задняя ось, несущая два колеса, делается из двух отдельных частей I и II, на концах которых наглухо насажены два одинаковых зубчатых колеса A и B. На этих частях вала в подшипниках вращается коробка C с коническим колесом D, наглухо с ней соединенным. Коробка получает вращение от главного (продольного) вала, приводимого в движение мотором, через посредство зубчатки E. Вращение коробки C передается зубчатым колесам A и B при помощи двух конических шестеренок F (сателлитов), свободно вращающихся вокруг осей, укрепленных в коробке перпендикулярно к задней оси I-II автомобиля. Найти угловые скорости задних колес автомобиля в зависимости от угловой скорости вращения коробки C и угловую скорость ωr сателлитов по отношению к коробке, если автомобиль движется со скоростью v=36 км/ч по закруглению среднего радиуса ρ=5 м; радиусы колес задней оси R=0,5 м; расстояние между ними l=2 м. Радиусы зубчатых колес A и B вдвое больше радиусов сателлитов: R0=2r.

24.32 При применении дифференциального зацепления для получения назначенного отношения чисел оборотов осей AB и MN к коническим колесам I и II дифференциального зацепления присоединяют наглухо цилиндрические зубчатые колеса I' и II'', которые сцепляются с шестеренками IV и V, насаженными наглухо на ось AB. Найти соотношение между угловыми скоростями ω0 и ω валов AB и MN, если радиусы колес I и II одинаковы, числа зубцов колес I', II'', IV и V соответственно равны m, n, x, y.

24.33 В дифференциальной передаче, рассмотренной в предыдущей задаче, между зубчатыми колесами I' и IV введено паразитное колесо с неподвижной осью вращения. Требуется найти соотношение между угловыми скоростями ω0 и ω валов AB и MN, сохраняя все остальные условия задачи.

24.34 Дифференциальная передача, соединяющая обе половины задней оси автомобиля, состоит из двух шестеренок с одинаковыми радиусами R=6 см, насаженных на полуоси, вращающиеся при движении автомобиля на повороте с разными, но постоянными по величине угловыми скоростями ω1=6 рад/с и ω2=4 рад/с одинакового направления. Между шестеренками зажат бегущий сателлит радиуса r=3 см, свободно насаженный на ось. Ось сателлита жестко заделана в кожухе и может вращаться вместе с ним вокруг задней оси автомобиля. Найти относительно корпуса автомобиля ускорения четырех точек M1, M2, M3 и M4 сателлита, лежащих на концах двух диаметров, как показано на рисунке.

24.35 В дифференциале зуборезного станка ускорительное колесо 4 сидит на ведущем валу a свободно, вместе со скрепленным с ним жестко колесом 1. На конце ведущего вала a сидит головка, несущая ось CC сателлитов 2-2. Определить угловую скорость ведомого вала b с наглухо заклиненным колесом 3 в пяти случаях: 1) Угловая скорость ведущего вала ωa, угловая скорость ускорительного колеса ω4=0. 2) Угловая скорость ведущего вала ωa, ускорительное колесо вращается в ту же сторону, что и ведущий вал, с угловой скоростью ω4. 3) Ускорительное колесо и ведущий вал вращаются в одну и ту же сторону с равными угловыми скоростями ω4=ωa. 4) Ускорительное колесо и ведущий вал вращаются в одну и ту же сторону, причем ω4=2ωa. 5) Угловая скорость ведущего вала ωa, ускорительное колесо вращается в противоположную сторону с угловой скоростью ω4.

24.36 В дифференциале зуборезного станка, описанном в предыдущей задаче, угловая скорость ведущего вала ωa=60 об/мин. Определить, какова должна быть угловая скорость ускорительного колеса, чтобы ведомый вал был неподвижен.

24.37 В дифференциале зуборезного станка ускорительное колесо 4 несет на себе ось сателлитов. Угловая скорость ведущего вала ωa. Определить угловую скорость ведомого вала в следующих трех случаях: 1) Ускорительное колесо 4 вращается в сторону ведущего вала с угловой скоростью ω4=ωa. 2) То же, но вращения ведущего вала и ускорительного колеса противоположны по направлению. 3) Ускорительное колесо и ось сателлитов неподвижны.

24.38 В станочном дифференциале коническое колесо 1 заклинено на ведущем валу a, на конце ведомого вала b сидит головка, несущая ось CC сателлитов 2-2. На том же валу свободно сидит коническое колесо 3, составляющее одно целое с червячным колесом 4. Определить передаточное число при неподвижном червяке 5, а следовательно, и колесах 4 и 3, если все конические колеса одного радиуса.

24.39 Двойной дифференциал состоит из кривошипа III, который может вращаться вокруг неподвижной оси ab. На кривошип свободно насажен сателлит IV, состоящий из двух наглухо скрепленных между собой конических зубчатых колес радиусов r1=5 см и r2=2 см. Колеса эти соединены с двумя коническими зубчатыми колесами I и II радиусов R1=10 см и R2=5 см, вращающимися вокруг оси ab, но с кривошипом не связанными. Угловые скорости колес I и II соответственно равны: ω1=4,5 рад/с и ω2=9 рад/с. Определить угловую скорость кривошипа ω3 и угловую скорость сателлита по отношению к кривошипу ω43, если оба колеса вращаются в одну и ту же сторону.

24.40 Решить предыдущую задачу, предполагая, что зубчатые колеса I и II вращаются в противоположные стороны.

online-tusa.com