На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
42.10 Однородный стержень KL, прикрепленный в центре под углом α к вертикальной оси AB, вращается равноускоренно вокруг этой оси с угловым ускорением ε. Определить силы динамического давления оси AB на подпятник A и подшипник B, если: M-масса стержня, 2l-его длина, OA=OB=h/2; OK=OL=l. В начальный момент система находилась в покое.
42.11 Однородная прямоугольная пластинка OABD массы M со сторонами a и b, прикрепленная стороной OA к валу OE, вращается с постоянной угловой скоростью ω. Расстояние между опорами OE=2a. Вычислить боковые силы динамического давления вала на опоры O и E.
42.12 Прямой однородный круглый цилиндр массы M, длины 2l и радиуса r вращается с постоянной угловой скоростью ω вокруг вертикальной оси Oz, проходящей через центр масс O цилиндра; угол между осью цилиндра Oζ и осью Oz сохраняет при этом постоянную величину α. Расстояние H1H2 между подпятником и подшипником равно h. Определить боковые силы давления: N1 на подпятник и N2 на подшипник.
42.13 Вычислить силы давления в подшипниках A и B при вращении вокруг оси AB однородного тонкого круглого диска CD паровой турбины, предполагая, что ось AB проходит через центр O диска, но вследствие неправильного рассверливания втулки составляет с перпендикуляром к плоскости диска угол AOE=α=0,02 рад. Дано: масса диска 3,27 кг, радиус его 20 см, угловая скорость соответствует 30000 об/мин, расстояние AO=50 см, OB=30 см; ось AB считать абсолютно твердой и принять sin 2α=2α.
42.14 В результате неточной сборки круглого диска паровой турбины плоскость диска образует с осью AB угол α, а центр масс C диска не лежит на этой оси. Эксцентриситет OC=a. Найти боковые силы динамического давления на подшипники A и B, если масса диска равна M, радиус его R, а AO=OB=h; угловая скорость вращения диска постоянна и равна ω.
42.15 Однородный круглый диск массы M и радиуса R насажен на ось AB, проходящую через точку O диска и составляющую с его осью симметрии Cz1 угол α. OL-проекция оси z, совмещенной с осью AB, на плоскость диска, причем OE=a, OK=b. Вычислить боковые силы динамического давления на подшипники A и B, если диск вращается с постоянной угловой скоростью ω, а AO=OB=h.
42.16 Однородная прямоугольная пластинка массы M равномерно вращается вокруг своей диагонали AB с угловой скоростью ω. Определить силы динамического давления пластинки на опоры A и B, если длины сторон равны a и b.
42.17 С какой угловой скоростью должна вращаться вокруг катета AB=a однородная пластинка, имеющая форму равнобедренного прямоугольного треугольника ABD, чтобы сила бокового давления на нижнюю опору B равнялась нулю? Расстояние между опорами считать равным длине катета AB.
42.18 Вращающаяся часть подъемного крана состоит из стрелы CD длины L и массы M1, противовеса E и груза K массы M2 каждый. (См. рисунок к задаче 34.31.) При включении постоянного тормозящего момента кран, вращаясь до этого с угловой скоростью, соответствующей n=1,5 об/мин, останавливается через 2 c. Рассматривая стрелу как однородную тонкую балку, а противовес с грузом как точечные массы, определить динамические реакции опор A и B крана в конце его торможения. Расстояние между опорами крана AB=3 м, M2=5 т, M1=8 т, α=45°, L=30 м, l=10 м, центр масс всей системы находится на оси вращения; отклонением груза от плоскости крана пренебречь. Оси x, y связаны с краном. Стрела CD находится в плоскости yz.
43.1 Однородная тяжелая балка AB длины 2l при закрепленных концах находится в горизонтальном положении. В некоторый момент конец A освобождается, и балка начинает падать, вращаясь вокруг горизонтальной оси, проходящей через конец B; в момент, когда балка становится вертикальной, освобождается и конец B. Определить в последующем движении балки траекторию ее центра масс и угловую скорость ω.
43.2 Тяжелый однородный стержень длины l подвешен своим верхним концом на горизонтальной оси O. Стержню, находившемуся в вертикальном положении, была сообщена угловая скорость ω0=3√(g/l). Совершив полоборота, он отделяется от оси O. Определить в последующем движении стержня траекторию его центра масс и угловую скорость вращения ω.
43.3 Два однородных круглых цилиндра A и B, массы которых соответственно равны M1 и M2, а радиусы оснований r1 и r2, обмотаны двумя гибкими нитями, завитки которых расположены симметрично относительно средних плоскостей, параллельных основаниям цилиндров; оси цилиндров горизонтальны, причем образующие их перпендикулярны линиям наибольших скатов. Ось цилиндра A неподвижна; цилиндр B падает из состояния покоя под действием силы тяжести. Определить в момент t после начала движения, предполагая, что в этот момент нити еще остаются намотанными на оба цилиндра: 1) угловые скорости ω1 и ω2 цилиндров, 2) пройденный центром масс цилиндра B путь s и 3) натяжение T нитей.
43.4 Однородный стержень AB длины a поставлен в вертикальной плоскости под углом φ0 к горизонту так, что концом A он опирается на гладкую вертикальную стену, а концом B-на гладкий горизонтальный пол; затем стержню предоставлено падать без начальной скорости. 1) Определить угловую скорость и угловое ускорение стержня. 2) Найти, какой угол φ1 будет составлять стержень с горизонтом в тот момент, когда он отойдет от стены.
43.5 Использовав условие предыдущей задачи, определить угловую скорость φ' стержня и скорость нижнего его конца в момент падения стержня на пол.
43.6 Тонкая однородная доска ABCD прямоугольной формы прислонена к вертикальной стене и опирается на два гвоздя E и F без головок; расстояние AD равно FE. В некоторый момент доска начинает падать с ничтожно малой начальной угловой скоростью, вращаясь вокруг прямой AD. Исключая возможность скольжения доски вдоль гвоздей, определить угол α1=∠BAB1, при котором горизонтальная составляющая реакции изменяет направление, и угол α2 в момент отрыва доски от гвоздей.
43.7 Два диска вращаются вокруг одной и той же оси с угловыми скоростями ω1 и ω2; моменты инерции дисков относительно этой оси равны J1 и J2. Определить потерю кинетической энергии в случае, когда оба диска будут внезапно соединены фрикционной муфтой. Массой ее пренебречь.
43.8 Тело A вращается без трения относительно оси OO' с угловой скоростью ωA. В теле A на оси O1O'1 помещен ротор B, вращающийся в ту же сторону с относительной скоростью ωB. Оси OO' и O1O'1 расположены на одной прямой. Моменты инерции тела A и ротора B относительно этой прямой равны JA и JB. Пренебрегая потерями, определить работу, которую должен совершить мотор, установленный в теле A, для сообщения ротору B такой угловой скорости, при которой тело A остановится.
43.9 На шкив, вращающийся без сопротивления вокруг горизонтальной оси O с угловой скоростью ω0, накинули ремень с двумя грузами на концах. Шкив-однородный диск массы m и радиуса r, масса каждого из грузов M=2m. Считая начальные скорости грузов равными нулю, определить, с какой скоростью они будут двигаться после того, как скольжение ремня о шкив прекратится. Найти также работу сил трения ремня о шкив.
43.10 Твердое тело массы M качается вокруг горизонтальной оси O, перпендикулярной плоскости рисунка. Расстояние от оси подвеса до центра масс C равно a; радиус инерции тела относительно оси, проходящей через центр масс перпендикулярно плоскости рисунка, равен ρ. В начальный момент тело было отклонено из положения равновесия на угол φ0 и отпущено без начальной скорости. Определить две составляющие реакции оси R и N, расположенные вдоль направления, проходящего через точку подвеса и центр масс тела, и перпендикулярно ему. Выразить их в зависимости от угла φ отклонения тела от вертикали.
43.11 Тяжелый однородный цилиндр, получив ничтожно малую начальную скорость, скатывается без скольжения с горизонтальной площадки AB, край которой B заострен и параллелен образующей цилиндра. Радиус основания цилиндра r. В момент отделения цилиндра от площадки плоскость, проходящая через ось цилиндра и край B, отклонена от вертикального положения на некоторый угол CBC1=α. Определить угловую скорость цилиндра в момент отделения его от площадки, а также угол α. Трением качения и сопротивлением воздуха пренебречь.
43.12 Автомашина для шлифовки льда движется прямолинейно по горизонтальной плоскости катка. Положение центра масс C указано на рисунке к задаче 38.12. В момент выключения мотора машина имела скорость v. Найти путь, пройденный машиной до остановки, если fк-коэффициент трения качения между колесами автомашины и льдом, а f-коэффициент трения скольжения между шлифующей кромкой A и льдом. Массой колес радиуса r, катящихся без скольжения, пренебречь.
43.13 На боковой поверхности круглого цилиндра с вертикальной осью, вокруг которой он может вращаться без трения, вырезан гладкий винтовой желоб с углом подъема α. В начальный момент цилиндр находится в покое; в желоб опускают тяжелый шарик; он падает по желобу без начальной скорости и заставляет цилиндр вращаться. Дано: масса цилиндра M, радиус его R, масса шарика m; расстояние от шарика до оси считаем равным R и момент инерции цилиндра равным MR^2/2. Определить угловую скорость ω, которую цилиндр будет иметь в тот момент, когда шарик опустится на высоту h.
44.1 Баба A ударного копра падает с высоты 4,905 м и ударяет наковальню B, укрепленную на пружине. Масса бабы 10 кг, и масса наковальни 5 кг. Определить, с какой скоростью начнется движение наковальни после удара, если баба будет двигаться вместе с ней.
44.2 Груз A массы M1 падает без начальной скорости с высоты h на плиту B массы M2, укрепленную на пружине, которая имеет коэффициент жесткости c. Найти величину s сжатия пружины после удара в предположении, что коэффициент восстановления равен нулю.
44.3 В приборе для опытного определения коэффициента восстановления шарик из испытуемого материала падает без начальной скорости внутри вертикальной прозрачной трубки с заданной высоты h1=50 см на неподвижно закрепленную горизонтальную пластинку из соответствующего материала. Найти коэффициент восстановления, если высота, на которую подскочил шарик после удара, оказалась равной h2=45 см.
online-tusa.com
|
SHOP