На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
5.4 Поезд поднимается по прямолинейному пути, имеющему уклон 0,008, с постоянной скоростью; вес поезда, не считая электровоза, 12000 кН. Какова сила тяги P электровоза, если сопротивление движению равно 0,005 силы давления поезда на рельсы?
5.5 Негладкой наклонной плоскости придан такой угол α наклона к горизонту, что тяжелое тело, помещенное на эту плоскость, спускается с той постоянной скоростью, которая ему сообщена в начале движения. Определить коэффициент трения f.
5.6 Найти угол естественного откоса земляного грунта, если коэффициент трения для этого грунта f=0,8. Углом естественного откоса называется тот наибольший угол наклона откоса к горизонту, при котором частица грунта, находящаяся на откосе, остается в равновесии.
5.7 Ящик веса P стоит на шероховатой горизонтальной плоскости с коэффициентом трения f. Определить, под каким углом β надо приложить силу Q, и величину этой силы при условии: сдвинуть ящик при наименьшей величине Q.
5.8 Три груза A, B, C веса 10 Н, 30 Н и 60 Н соответственно лежат на плоскости, наклоненной под углом α к горизонту. Грузы соединены тросами, как показано на рисунке. Коэффициенты трения между грузами и плоскостью равны fA=0,1, fB=0,25 и fC=0,5 соответственно. Определить угол α, при котором тела равномерно движутся вниз по плоскости. Найти также натяжения тросов TAB и TBC.
5.9 На верхней грани прямоугольного бруса B, вес которого 200 Н, находится прямоугольный брус A веса 100 Н. Брус B опирается своей нижней гранью на горизонтальную поверхность C, причем коэффициент трения между ними f2=0,2. Коэффициент трения между брусами A и B f1=0,5. На брус A действует сила P=60 Н, образующая с горизонтом угол α=30°. Будет ли брус A двигаться относительно B? Будет ли брус B двигаться относительно плоскости C?
5.10 Два тела A и B расположены на наклонной плоскости C так, как показано на рисунке. Тело A весит 100 Н, тело B-200 Н. Коэффициент трения между A и B f1=0,6, между B и C f2=0,2. Исследовать состояние системы при различных значениях силы P, приложенной к телу A параллельно наклонной плоскости.
5.11 На наклонной плоскости лежит прямоугольный брус B веса 400 Н. К нему с помощью троса присоединяют прямоугольный брус A веса 200 Н, который, скользя по наклонной плоскости, натягивает трос. Коэффициенты трения с наклонной плоскостью fA=0,5 и fB=2/3. Будет ли система в дальнейшем находиться в покое? Найти натяжение T троса и величины сил трения, действующие на каждое тело. Весом троса пренебречь.
5.12 Клин C вставлен между двумя телами A и B, которые лежат на шероховатой горизонтальной плоскости. Одна сторона клина вертикальна, другая-образует с вертикалью угол α=arctg 1/3. Вес тела A равен 400 Н, а вес тела B 300 Н; коэффициенты трения между поверхностями указаны на рисунке. Найти величину силы Q, под действием которой одно из тел сдвинется, а также значение силы трения F, действующей при этом со стороны горизонтальной плоскости на оставшееся неподвижным тело.
5.13 Цилиндр A лежит в направляющих B, поперечное сечение которых-симметричный клин с углом раствора θ. Коэффициент трения между цилиндром A и направляющей B равен f. Вес цилиндра равен Q. При какой величине силы P цилиндр начнет двигаться горизонтально? Каков должен быть угол θ, чтобы движение началось при значении силы P, равной весу цилиндра Q?
5.14 Цилиндр веса Q лежит на двух опорах A и B, расположенных симметрично относительно вертикали, проходящей через центр цилиндра. Коэффициент трения между цилиндром и опорами равен f. При какой величине тангенциальной силы T цилиндр начнет вращаться? При каком угле θ это устройство будет самотормозящимся?
5.15 Пренебрегая трением между ползуном A и направляющей, а также трением во всех шарнирах и подшипниках кривошипного механизма, определить, какова должна быть сила P, необходимая для поддерживания груза Q при указанном на рисунке положении механизма. Каковы минимальное и максимальное значения P, обеспечивающие неподвижность груза Q, если коэффициент трения между ползуном A и направляющей равен f?
5.16 Груз B веса P удерживается с помощью троса BAD в равновесии при подъеме по шероховатой поверхности, имеющей форму четверти кругового цилиндра. Коэффициент трения между поверхностью и грузом f=tg φ, где φ-угол трения. Определить натяжение троса как функцию угла α. Найти условие, которому должен удовлетворять угол α, чтобы натяжение троса принимало экстремальное значение. Размерами груза и блока A пренебречь.
5.17 Груз B веса P удерживается в равновесии при спуске по шероховатой поверхности, имеющей форму четверти кругового цилиндра. Коэффициент трения между поверхностью и грузом f=tg φ, где φ-угол трения. Определить натяжение троса S как функцию угла α. В каких пределах может меняться натяжение троса при равновесии груза B? Размерами груза и блока пренебречь.
5.18 Груз Q может скользить по шероховатым горизонтальным направляющим CD. К грузу прикреплен трос, пропущенный через гладкое отверстие A и несущий груз P. Коэффициент трения груза о направляющие f=0,1. Вес груза Q=100 Н, груза P=50 Н. Расстояние от отверстия A до оси направляющих OA=15 см. Определить границы зоны застоя (геометрического места положений равновесия груза). Размерами груза и отверстия пренебречь.
5.19 Автомобиль удерживается с помощью тормозов на наклонной части дороги. При перемещении тормозной педали на 2 см тормозные колодки дисковых тормозов перемещаются на 0,2 мм. Диаметр рабочей части диска 220 мм, нагруженный диаметр колеса 520 мм, вес автомобиля 14 кН. Определить, с какой силой водитель должен нажимать на педаль тормоза, если угол наклона дороги 20°. Трением качения пренебречь. Коэффициент трения скольжения между тормозными колодками и диском f=0,5. Тормоза всех колес работают одинаково.
5.20. Груз Q может скользить по шероховатым горизонтальным направляющим AB. К грузу прикреплен трос, несущий груз Р. Определить границы участков, где равновесие невозможно, если вес груза Q=100 Н, груза Р=45 Н, коэффициент трения скольжения f=0,5. Расстояние от центра блока D до оси направляющих h=15 см. Размерами блока D и груза Q пренебречь.
5.21 К валу приложена пара сил с моментом M=100 Н*м. На валу заключено тормозное колесо, радиус r которого равен 25 см. Найти, с какой силой Q надо прижимать к колесу тормозные колодки, чтобы колесо оставалось в покое, если коэффициент трения покоя f между колесом и колодками равен 0,25.
5.22 Трамвайная дверь отодвигается с трением в нижнем пазу. Коэффициент трения f не более 0,5. Определить наибольшую высоту h, на которой можно поместить ручку двери, чтобы дверь при отодвигании не опрокидывалась. Ширина двери l=0,8 м; центр тяжести двери находится на ее вертикальной оси симметрии.
5.23 Цилиндрический вал веса Q и радиуса R приводится во вращение грузом, подвешенным к нему на веревке; вес груза равен P. Радиус шипов вала r=R/2. Коэффициент трения в подшипниках равен 0,05. Определить, при каком отношении веса Q к весу P груза последний опускается равномерно.
5.24 Кронштейн, нагруженный вертикальной силой P=600 Н, прикреплен к стене двумя болтами. Определить затяжку болтов, необходимую для укрепления кронштейна на стене. Коэффициент трения между кронштейном и стеной f=0,3. Для большей осторожности расчет произвести в предположении, что затянут только верхний болт и что болты поставлены с зазором и не должны работать на срез. Дано b/a > f. Указание. Затяжкой называется усилие, действующее вдоль оси болта. Полная затяжка верхнего болта состоит из двух частей: первая устраняет возможность отрыва кронштейна и опрокидывания его вокруг нижнего болта, вторая обеспечивает то нормальное давление верхней части кронштейна на стену, которое вызывает необходимую силу трения.
5.25 Пест AB приводится в движение пальцами M, насаженными на вал. Вес песта 180 Н. Расстояние между направляющими C и D равно b=1,5 м. Расстояние точки прикосновения пальца к выступу от оси песта a=0,15 м. Найти силу P, необходимую для подъема песта, если принять во внимание силу трения между направляющими C и D и пестом, равную 0,15 давления между трущимися частями.
5.26 Горизонтальный стержень AB имеет на конце A отверстие, которым он надет на вертикальную круглую стойку CD; длина втулки b=2 см; в точке E на расстоянии a от оси стойки к стержню подвешен груз P. Определить, пренебрегая весом стержня AB, расстояние a так, чтобы под действием груза P стержень оставался в равновесии, если коэффициент трения между стержнем и стойкой f=0,1.
5.27 К вертикальной стене приставлена лестница AB, опирающаяся своим нижним концом на горизонтальный пол. Коэффициент трения лестницы о стену f1, о пол f2. Вес лестницы вместе с находящимся на ней человеком равен p и приложен в точке C, которая делит длину лестницы в отношении m/n. Определить наибольший угол α, составляемый лестницей со стеной в положении равновесия, а также нормальные составляющие реакций NA стены и NB пола для этого значения α.
5.28 Лестница AB веса P упирается в гладкую стену и опирается на горизонтальный негладкий пол. Коэффициент трения лестницы о пол равен f. Под каким углом α к полу надо поставить лестницу, чтобы по ней мог подняться доверху человек, вес которого p?
online-tusa.com
|
SHOP