На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

5.4 Поезд поднимается по прямолинейному пути, имеющему уклон 0,008, с постоянной скоростью; вес поезда, не считая электровоза, 12000 кН. Какова сила тяги P электровоза, если сопротивление движению равно 0,005 силы давления поезда на рельсы?

5.5 Негладкой наклонной плоскости придан такой угол α наклона к горизонту, что тяжелое тело, помещенное на эту плоскость, спускается с той постоянной скоростью, которая ему сообщена в начале движения. Определить коэффициент трения f.

5.6 Найти угол естественного откоса земляного грунта, если коэффициент трения для этого грунта f=0,8. Углом естественного откоса называется тот наибольший угол наклона откоса к горизонту, при котором частица грунта, находящаяся на откосе, остается в равновесии.

5.7 Ящик веса P стоит на шероховатой горизонтальной плоскости с коэффициентом трения f. Определить, под каким углом β надо приложить силу Q, и величину этой силы при условии: сдвинуть ящик при наименьшей величине Q.

5.8 Три груза A, B, C веса 10 Н, 30 Н и 60 Н соответственно лежат на плоскости, наклоненной под углом α к горизонту. Грузы соединены тросами, как показано на рисунке. Коэффициенты трения между грузами и плоскостью равны fA=0,1, fB=0,25 и fC=0,5 соответственно. Определить угол α, при котором тела равномерно движутся вниз по плоскости. Найти также натяжения тросов TAB и TBC.

5.9 На верхней грани прямоугольного бруса B, вес которого 200 Н, находится прямоугольный брус A веса 100 Н. Брус B опирается своей нижней гранью на горизонтальную поверхность C, причем коэффициент трения между ними f2=0,2. Коэффициент трения между брусами A и B f1=0,5. На брус A действует сила P=60 Н, образующая с горизонтом угол α=30°. Будет ли брус A двигаться относительно B? Будет ли брус B двигаться относительно плоскости C?

5.10 Два тела A и B расположены на наклонной плоскости C так, как показано на рисунке. Тело A весит 100 Н, тело B-200 Н. Коэффициент трения между A и B f1=0,6, между B и C f2=0,2. Исследовать состояние системы при различных значениях силы P, приложенной к телу A параллельно наклонной плоскости.

5.11 На наклонной плоскости лежит прямоугольный брус B веса 400 Н. К нему с помощью троса присоединяют прямоугольный брус A веса 200 Н, который, скользя по наклонной плоскости, натягивает трос. Коэффициенты трения с наклонной плоскостью fA=0,5 и fB=2/3. Будет ли система в дальнейшем находиться в покое? Найти натяжение T троса и величины сил трения, действующие на каждое тело. Весом троса пренебречь.

5.12 Клин C вставлен между двумя телами A и B, которые лежат на шероховатой горизонтальной плоскости. Одна сторона клина вертикальна, другая-образует с вертикалью угол α=arctg 1/3. Вес тела A равен 400 Н, а вес тела B 300 Н; коэффициенты трения между поверхностями указаны на рисунке. Найти величину силы Q, под действием которой одно из тел сдвинется, а также значение силы трения F, действующей при этом со стороны горизонтальной плоскости на оставшееся неподвижным тело.

5.13 Цилиндр A лежит в направляющих B, поперечное сечение которых-симметричный клин с углом раствора θ. Коэффициент трения между цилиндром A и направляющей B равен f. Вес цилиндра равен Q. При какой величине силы P цилиндр начнет двигаться горизонтально? Каков должен быть угол θ, чтобы движение началось при значении силы P, равной весу цилиндра Q?

5.14 Цилиндр веса Q лежит на двух опорах A и B, расположенных симметрично относительно вертикали, проходящей через центр цилиндра. Коэффициент трения между цилиндром и опорами равен f. При какой величине тангенциальной силы T цилиндр начнет вращаться? При каком угле θ это устройство будет самотормозящимся?

5.15 Пренебрегая трением между ползуном A и направляющей, а также трением во всех шарнирах и подшипниках кривошипного механизма, определить, какова должна быть сила P, необходимая для поддерживания груза Q при указанном на рисунке положении механизма. Каковы минимальное и максимальное значения P, обеспечивающие неподвижность груза Q, если коэффициент трения между ползуном A и направляющей равен f?

5.16 Груз B веса P удерживается с помощью троса BAD в равновесии при подъеме по шероховатой поверхности, имеющей форму четверти кругового цилиндра. Коэффициент трения между поверхностью и грузом f=tg φ, где φ-угол трения. Определить натяжение троса как функцию угла α. Найти условие, которому должен удовлетворять угол α, чтобы натяжение троса принимало экстремальное значение. Размерами груза и блока A пренебречь.

5.17 Груз B веса P удерживается в равновесии при спуске по шероховатой поверхности, имеющей форму четверти кругового цилиндра. Коэффициент трения между поверхностью и грузом f=tg φ, где φ-угол трения. Определить натяжение троса S как функцию угла α. В каких пределах может меняться натяжение троса при равновесии груза B? Размерами груза и блока пренебречь.

5.18 Груз Q может скользить по шероховатым горизонтальным направляющим CD. К грузу прикреплен трос, пропущенный через гладкое отверстие A и несущий груз P. Коэффициент трения груза о направляющие f=0,1. Вес груза Q=100 Н, груза P=50 Н. Расстояние от отверстия A до оси направляющих OA=15 см. Определить границы зоны застоя (геометрического места положений равновесия груза). Размерами груза и отверстия пренебречь.

5.19 Автомобиль удерживается с помощью тормозов на наклонной части дороги. При перемещении тормозной педали на 2 см тормозные колодки дисковых тормозов перемещаются на 0,2 мм. Диаметр рабочей части диска 220 мм, нагруженный диаметр колеса 520 мм, вес автомобиля 14 кН. Определить, с какой силой водитель должен нажимать на педаль тормоза, если угол наклона дороги 20°. Трением качения пренебречь. Коэффициент трения скольжения между тормозными колодками и диском f=0,5. Тормоза всех колес работают одинаково.

5.20. Груз Q может скользить по шероховатым горизонтальным направляющим AB. К грузу прикреплен трос, несущий груз Р. Определить границы участков, где равновесие невозможно, если вес груза Q=100 Н, груза Р=45 Н, коэффициент трения скольжения f=0,5. Расстояние от центра блока D до оси направляющих h=15 см. Размерами блока D и груза Q пренебречь.

5.21 К валу приложена пара сил с моментом M=100 Н*м. На валу заключено тормозное колесо, радиус r которого равен 25 см. Найти, с какой силой Q надо прижимать к колесу тормозные колодки, чтобы колесо оставалось в покое, если коэффициент трения покоя f между колесом и колодками равен 0,25.

5.22 Трамвайная дверь отодвигается с трением в нижнем пазу. Коэффициент трения f не более 0,5. Определить наибольшую высоту h, на которой можно поместить ручку двери, чтобы дверь при отодвигании не опрокидывалась. Ширина двери l=0,8 м; центр тяжести двери находится на ее вертикальной оси симметрии.

5.23 Цилиндрический вал веса Q и радиуса R приводится во вращение грузом, подвешенным к нему на веревке; вес груза равен P. Радиус шипов вала r=R/2. Коэффициент трения в подшипниках равен 0,05. Определить, при каком отношении веса Q к весу P груза последний опускается равномерно.

5.24 Кронштейн, нагруженный вертикальной силой P=600 Н, прикреплен к стене двумя болтами. Определить затяжку болтов, необходимую для укрепления кронштейна на стене. Коэффициент трения между кронштейном и стеной f=0,3. Для большей осторожности расчет произвести в предположении, что затянут только верхний болт и что болты поставлены с зазором и не должны работать на срез. Дано b/a > f. Указание. Затяжкой называется усилие, действующее вдоль оси болта. Полная затяжка верхнего болта состоит из двух частей: первая устраняет возможность отрыва кронштейна и опрокидывания его вокруг нижнего болта, вторая обеспечивает то нормальное давление верхней части кронштейна на стену, которое вызывает необходимую силу трения.

5.25 Пест AB приводится в движение пальцами M, насаженными на вал. Вес песта 180 Н. Расстояние между направляющими C и D равно b=1,5 м. Расстояние точки прикосновения пальца к выступу от оси песта a=0,15 м. Найти силу P, необходимую для подъема песта, если принять во внимание силу трения между направляющими C и D и пестом, равную 0,15 давления между трущимися частями.

5.26 Горизонтальный стержень AB имеет на конце A отверстие, которым он надет на вертикальную круглую стойку CD; длина втулки b=2 см; в точке E на расстоянии a от оси стойки к стержню подвешен груз P. Определить, пренебрегая весом стержня AB, расстояние a так, чтобы под действием груза P стержень оставался в равновесии, если коэффициент трения между стержнем и стойкой f=0,1.

5.27 К вертикальной стене приставлена лестница AB, опирающаяся своим нижним концом на горизонтальный пол. Коэффициент трения лестницы о стену f1, о пол f2. Вес лестницы вместе с находящимся на ней человеком равен p и приложен в точке C, которая делит длину лестницы в отношении m/n. Определить наибольший угол α, составляемый лестницей со стеной в положении равновесия, а также нормальные составляющие реакций NA стены и NB пола для этого значения α.

5.28 Лестница AB веса P упирается в гладкую стену и опирается на горизонтальный негладкий пол. Коэффициент трения лестницы о пол равен f. Под каким углом α к полу надо поставить лестницу, чтобы по ней мог подняться доверху человек, вес которого p?

online-tusa.com