На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

26.27 Самолет, пикируя отвесно, достиг скорости 300 м/с, после чего летчик стал выводить самолет из пике, описывая дугу окружности радиуса R=600 м в вертикальной плоскости. Масса летчика 80 кг. Какая наибольшая сила прижимает летчика к креслу?

26.28 Груз M веса 10 Н подвешен к тросу длины l=2 м и совершает вместе с тросом колебания согласно уравнению φ=π/6 sin 2πt, где φ-угол отклонения троса от вертикали в радианах, t-время в секундах. Определить натяжения T1 и T2 троса в верхнем и нижнем положениях груза.

26.29 Велосипедист описывает кривую радиуса 10 м со скоростью 5 м/сек. Найти угол наклона срединной плоскости велосипеда к вертикали, а также тот наименьший коэффициент трения между шинами велосипеда и полотном дороги, при котором будет обеспечена устойчивость велосипеда.

26.30 Велосипедный трек на кривых участках пути имеет виражи, профиль которых в поперечном сечении представляет собой прямую, наклонную к горизонту, так что на кривых участках внешний край трека выше внутреннего. С какой наименьшей и с какой наибольшей скоростью можно ехать по виражу, имеющему радиус R и угол наклона к горизонту α, если коэффициент трения резиновых шин о грунт трека равен f?

26.31 Во избежание несчастных случаев, происходивших от разрыва маховиков, устраивается следующее приспособление. В ободе маховика помещается тело A, удерживаемое внутри его пружиной S; когда скорость маховика достигает предельной величины, тело А концом своим задевает выступ В задвижки CD, которая и закрывает доступ пара в машину. Пусть масса тела А равна 1,5 кг, расстояние e выступа В от маховика равно 2,5 см, предельная угловая скорость маховика 120 об/мин. Определить необходимый коэффициент жесткости пружины c (т. е. величину силы, под действием которой пружина сжимается на 1 см), предполагая, что масса тела А сосредоточена в точке, расстояние которой от оси вращения маховика в изображенном на рисунке положении равно 147,5 см.

26.32 В регуляторе имеются гири A массы 30 кг, которые могут скользить вдоль горизонтальной прямой MN; эти гири соединены пружинами с точками M и N; центры тяжести гирь совпадают с концами пружин. Расстояние конца каждой пружины от оси O, перпендикулярной плоскости рисунка, в ненапряженном состоянии равно 5 см, изменение длины пружины на 1 см вызывается силой в 200 Н. Определить расстояние центров тяжести гирь от оси O, когда регулятор, равномерно вращаясь вокруг оси O, делает 120 об/мин.

26.33 Предохранительный выключатель паровых турбин состоит из пальца A массы m=0,225 кг, помещенного в отверстии, просверленном в передней части вала турбины перпендикулярно оси, и отжимаемого внутрь пружиной; центр тяжести пальца отстоит от оси вращения вала на расстоянии l=8,5 мм при нормальной скорости вращения турбины n=1500 об/мин. При увеличении числа оборотов на 10% палец преодолевает реакцию пружины, отходит от своего нормального положения на расстояние x=4,5 мм, задевает конец рычага B и освобождает собачку C, связанную системой рычагов с пружиной, закрывающей клапан парораспределительного механизма турбины. Определить жесткость пружины, удерживающей тело A, т.е. силу, необходимую для сжатия ее на 1 см, считая реакцию пружины пропорциональной ее сжатию.

26.34 Точка массы m движется по эллипсу x^2/a2+y2/b2=1. Ускорение точки параллельно оси y. При t=0 координаты точки были x=0, y=b, начальная скорость v0. Определить силу, действующую на движущуюся точку в каждой точке ее траектории.

26.35 Шарик массы m закреплен на конце вертикального упругого стержня, зажатого нижним концом в неподвижной стойке. При небольших отклонениях стержня от его вертикального равновесного положения можно приближенно считать, что центр шарика движется в горизонтальной плоскости Oxy, проходящей через верхнее равновесное положение центра шарика. Определить закон изменения силы, с которой упругий, изогнутый стержень действует на шарик, если выведенный из своего положения равновесия, принятого за начало координат, шарик движется согласно уравнениям x=a cos kt, y=b sin kt, где a, b, k-постоянные величины.

27.1 Камень падает в шахту без начальной скорости. Звук от удара камня о дно шахты услышан через 6,5 с от момента начала его падения. Скорость звука равна 330 м/с. Найти глубину шахты.

27.2 Тяжелое тело спускается по гладкой плоскости, наклоненной под углом 30° к горизонту. Найти, за какое время тело пройдет путь 9,6 м, если в начальный момент его скорость равнялась 2 м/с.

27.3 При выстреле из орудия снаряд вылетает с горизонтальной скоростью 570 м/с. Масса снаряда 6 кг. Как велико среднее давление пороховых газов, если снаряд проходит внутри орудия 2 м? Сколько времени движется снаряд в стволе орудия, если считать давление газов постоянным?

27.4 Тело массы m вследствие полученного толчка прошло по негладкой горизонтальной плоскости за 5 с расстояние s=24,5 м и остановилось. Определить коэффициент трения f.

27.5 За какое время и на каком расстоянии может быть остановлен тормозом вагон трамвая, идущий по горизонтальному пути со скоростью 10 м/с, если сопротивление движению, развиваемое при торможении, составляет 0,3 веса вагона.

27.6 Принимая в первом приближении сопротивление откатника постоянным, определить продолжительность отката ствола полевой пушки, если начальная скорость отката равна 10 м/с, а средняя длина отката равна 1 м.

27.7 Тяжелая точка поднимается по негладкой наклонной плоскости, составляющей угол α=30° с горизонтом. В начальный момент скорость точки равнялась v0=15 м/с. Коэффициент трения f=0,1. Какой путь пройдет точка до остановки? За какое время точка пройдет этот путь?

27.8 По прямолинейному железнодорожному пути с углом наклона α=10° вагон катится с постоянной скоростью. Считая сопротивление трения пропорциональным нормальному давлению, определить ускорение вагона и его скорость через 20 с после начала движения, если он начал катиться без начальной скорости по пути с углом наклона β=15°. Определить также, какой путь пройдет вагон за это время.

27.9 Найти наибольшую скорость падения шара массы 10 кг и радиуса r=8 см, принимая, что сопротивление воздуха равно R=kσv^2, где v-скорость движения, σ-площадь проекции тела на плоскость, перпендикулярную направлению его движения, и k-численный коэффициент, зависящий от формы тела и имеющий для шара значение 0,24 Н*с2/м4.

27.10 Два геометрически равных и однородных шара сделаны из различных материалов. Плотности материала шаров соответственно равны γ1 и γ2. Оба шара падают в воздухе. Считая сопротивление среды пропорциональным квадрату скорости, определить отношение максимальных скоростей шаров.

27.11 При скоростном спуске лыжник массы 90 кг скользил по склону в 45°, не отталкиваясь палками. Коэффициент трения лыж о снег f=0,1. Сопротивление воздуха движению лыжника пропорционально квадрату скорости лыжника и при скорости в 1 м/с равно 0,635 Н. Какую наибольшую скорость мог развить лыжник? Насколько увеличится максимальная скорость, если подобрав лучшую мазь, лыжник уменьшит коэффициент трения до 0,05?

27.12 Корабль движется, преодолевая сопротивление воды, пропорциональное квадрату скорости и равное 1200 Н при скорости в 1 м/с. Сила упора винтов направлена по скорости движения и изменяется по закону T=12*10^5(1-v/33) Н, где v-скорость корабля, выраженная в м/с. Определить наибольшую скорость, которую может развить корабль.

27.13 Самолет летит горизонтально. Сопротивление воздуха пропорционально квадрату скорости и равно 0,5 Н при скорости в 1 м/с. Сила тяги постоянна, равна 30760 Н и составляет угол в 10° с направлением полета. Определить наибольшую скорость самолета.

27.14 Самолет массы 10^4 кг приземляется на горизонтальное поле на лыжах. Летчик подводит самолет к поверхности без вертикальной скорости и вертикального ускорения в момент приземления. Сила лобового сопротивления пропорциональна квадрату скорости и равна 10 Н при скорости в 1 м/с. Подъемная сила пропорциональна квадрату скорости и равна 30 Н при скорости в 1 м/с. Определить длину и время пробега самолета до остановки, приняв коэффициент трения f=0,1.

27.15 Самолет начинает пикировать без начальной вертикальной скорости. Сила сопротивления воздуха пропорциональна квадрату скорости. Найти зависимость между вертикальной скоростью в данный момент, пройденным путем и максимальной скоростью пикирования.

27.16 На какую высоту H и за какое время T поднимется тело веса p, брошенное вертикально вверх со скоростью v0, если сопротивление воздуха может быть выражено формулой k^2pv2, где v-величина скорости тела?

online-tusa.com