На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
35.14 На рисунке изображена крановая тележка A массы M1, которая заторможена посередине балки BD. В центре масс C1 тележки подвешен трос длины l с привязанным к нему грузом C2 массы M2. Трос с грузом совершает гармонические колебания в вертикальной плоскости. Определить: 1) суммарную вертикальную реакцию балки BD, считая ее жесткой; 2) закон движения точки C1 в вертикальном направлении, считая балку упругой с коэффициентом упругости, равным c. В начальный момент балка, будучи недеформированной, находилась в покое в горизонтальном положении. Считая колебания троса малыми, принять: sin φ≈φ, cos φ≈1. Начало отсчета оси y взять в положении статического равновесия точки C1. Массой троса и размерами тележки по сравнению с длиной балки пренебречь.
35.15 Сохранив данные предыдущей задачи и считая балку BD жесткой, определить: 1) суммарную горизонтальную реакцию рельсов; 2) в предположении, что тележка не заторможена, закон движения центра масс C1 тележки A вдоль оси x. В начальный момент точка C1 находилась в покое в начале отсчета оси x. Трос совершает колебания по закону φ=φ0 cos ωt.
35.16 На средней скамейке лодки, находившейся в покое, сидели два человека. Один из них, массы M1=50 кг, переместился вправо на нос лодки. В каком направлении и на какое расстояние должен переместиться второй человек массы M2=70 кг для того, чтобы лодка осталась в покое? Длина лодки 4 м. Сопротивлением воды движению лодки пренебречь.
35.17 На однородную призму A, лежащую на горизонтальной плоскости, положена однородная призма B; поперечные сечения призм-прямоугольные треугольники, масса призмы A втрое больше массы призмы B. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину l, на которую передвинется призма A, когда призма B, спускаясь по A, дойдет до горизонтальной плоскости.
35.18 По горизонтальной товарной платформе длины 6 м и массы 2700 кг, находившейся в начальный момент в покое, двое рабочих перекатывают тяжелую отливку из левого конца платформы в правый. В какую сторону и насколько переместится при этом платформа, если общая масса груза и рабочих равна 1800 кг? Силами сопротивления движению платформы пренебречь.
35.19 Два груза M1 и M2, соответственно массы M1 и M2, соединенные нерастяжимой нитью, переброшенной через блок A, скользят по гладким боковым сторонам прямоугольного клина, опирающегося основанием BC на гладкую горизонтальную плоскость. Найти перемещение клина по горизонтальной плоскости при опускании груза M1 на высоту h=10 см. Масса клина M=4M1=16M2; массой нити и блока пренебречь.
35.20 Три груза массы M1=20 кг, M2=15 кг и M3=10 кг соединены нерастяжимой нитью, переброшенной через неподвижные блоки L и N. При опускании груза M1 вниз груз M2 перемещается по верхнему основанию четырехугольной усеченной пирамиды ABCD массы M=100 кг вправо, а груз M3 поднимается по боковой грани AB вверх. Пренебрегая трением между усеченной пирамидой ABCD и полом, определить перемещение усеченной пирамиды ABCD относительно пола, если груз M1 опустится вниз на 1 м. Массой нити пренебречь.
35.21 Подвижной поворотный кран для ремонта уличной электросети установлен на автомашине массы 1 т. Люлька K крана, укрепленная на стержне L, может поворачиваться вокруг горизонтальной оси O, перпендикулярной плоскости рисунка. В начальный момент кран, занимавший горизонтальное положение, и автомашина находились в покое. Определить перемещение незаторможенной автомашины, если кран повернулся на 60°. Масса однородного стержня L длины 3 м равна 100 кг, а люльки K-200 кг. Центр масс C люльки K отстоит от оси O на расстоянии OC=3,5 м. Сопротивлением движению пренебречь.
36.1 Определить главный вектор количеств движения работающего редуктора скоростей, изображенного на рисунке, если центры тяжести каждого из четырех вращающихся зубчатых колес лежат на осях вращения.
36.2 Определить сумму импульсов внешних сил, приложенных к редуктору, рассмотренному в предыдущей задаче, за произвольный конечный промежуток времени.
36.3 Определить главный вектор количеств движения маятника, состоящего из однородного стержня OA массы M1, длины 4r и однородного диска B массы M2, радиуса r, если угловая скорость маятника в данный момент равна ω.
36.4 Определить модуль и направление главного вектора количеств движения механизма эллипсографа, если масса кривошипа равна M1, масса линейки AB эллипсографа равна 2M1, масса каждой из муфт A и B равна M2; даны размеры: OC=AC=CB=l. Центры масс кривошипа и линейки расположены в их серединах. Кривошип вращается с угловой скоростью ω.
36.5 Определить главный вектор количеств движения центробежного регулятора, ускоренно вращающегося вокруг вертикальной оси. При этом углы φ изменяются по закону φ=φ(t) и верхние стержни, поворачиваясь, поднимают шары A и B. Длины стержней: OA=OB=AD=BD=l. Центр масс муфты D массы M2 лежит на оси z. Шары A и B считать точечными массами массы M1 каждый. Массой стержней пренебречь.
36.6 В механизме, изображенном на рисунке, движущееся колесо радиуса r имеет массу M, причем центр масс колеса находится в точке O1; центр масс прямолинейного стержня AB массы kM находится в его середине. Кривошип OO1 вращается вокруг оси O с постоянной угловой скоростью ω. Определить главный вектор количеств движения системы, пренебрегая массой кривошипа.
36.7 Масса ствола орудия равна 11 т. Масса снаряда равна 54 кг. Скорость снаряда у дульного среза v0=900 м/с. Определить скорость свободного отката ствола орудия в момент вылета снаряда.
36.8 Граната массы 12 кг, летевшая со скоростью 15 м/с, разорвалась в воздухе на две части. Скорость осколка массы 8 кг возросла в направлении движения до 25 м/с. Определить скорость второго осколка.
36.9 По горизонтальной платформе A, движущейся по инерции со скоростью v0, перемещается тележка B с постоянной относительной скоростью u0. В некоторый момент времени тележка была заторможена. Определить общую скорость v платформы с тележкой после ее остановки, если M-масса платформы, а m-масса тележки.
36.10 Сохранив условие предыдущей задачи, определить путь s, который пройдет тележка B по платформе A с момента начала торможения до полной остановки, и время торможения τ, если считать, что при торможении возникает постоянная по величине сила сопротивления F. Указание. В дифференциальном уравнении движения тележки использовать соотношение Mv+m(u+v)=const, где u и v-переменные скорости.
36.11 Из наконечника пожарного рукава с поперечным сечением 16 см^2 бьет струя воды под углом α=30° к горизонту со скоростью 8 м/с. Определить силу давления струи на вертикальную стену, пренебрегая действием силы тяжести на форму струи и считая, что частицы жидкости после встречи со стеною приобретут скорости, направленные вдоль стены.
36.12 Определить горизонтальную составляющую N возникающей при движении воды силы давления на опору колена трубы диаметра d=300 мм, по которой течет вода со скоростью v=2 м/с.
36.13 Вода входит в неподвижный канал переменного сечения, симметричный относительно вертикальной плоскости, со скоростью v0=2 м/с под углом α0=90° к горизонту; сечение канала при входе 0,02 м^2; скорость воды у выхода из канала v1=4 м/с и направлена под углом α1=30° к горизонту. Определить модуль горизонтальной составляющей силы, с которой вода действует на стенки канала.
36.14 Определить модуль горизонтальной составляющей силы давления струи воды на неподвижную лопатку турбинного колеса, если объемный расход воды Q, плотность γ, скорость подачи воды на лопатку v1 горизонтальна, скорость схода воды v2 образует угол α с горизонтом.
37.1 Однородный круглый диск массы M=50 кг и радиуса R=30 см катится без скольжения по горизонтальной плоскости, делая вокруг своей оси 60 об/мин. Вычислить главный момент количеств движения диска относительно осей: 1) проходящей через центр диска перпендикулярно плоскости движения; 2) относительно мгновенной оси.
37.2 Вычислить главный момент количеств движения линейки AB эллипсографа в абсолютном движении относительно оси z, совпадающей с осью вращения кривошипа OC, а также в относительном движении по отношению к оси, проходящей через центр масс C линейки параллельно оси z. Кривошип вращается с угловой скоростью, проекция которой на ось z равна ωz; масса линейки равна m; OC=AC=BC=l (см. рисунок к задаче 34.5).
37.3 Вычислить главный момент количеств движения планетарной передачи относительно неподвижной оси z, совпадающей с осью вращения кривошипа OC3. Неподвижное колесо 1 и подвижное колесо 3-одинакового радиуса r. Масса колеса 3 равна m. Колесо 2 массы m2 имеет радиус r2. Кривошип вращается с угловой скоростью, проекция которой на ось z равна ωz. Массой кривошипа пренебречь. Колеса считать однородными дисками.
online-tusa.com
|
SHOP