На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

58.6. На уравновешенном роторе, масса которого равна 1000 кг, симметрично относительно оси вращения закреплены две однотипные детали А1 и A2. Случайные отклонения ΔM1 и ΔM2 их масс М1 и М2 от номинального значения (математического ожидания) и случайные смещения Δх1, Δу1 и Δх2 и Δу2 их центров масс относительно точек, лежащих на одном диаметре на расстоянии l=1 м от оси ротора, приводят к тому, что центр масс С ротора вместе с деталями оказывается смещенным относительно оси. Поэтому координаты хс и ус центра масс являются случайными. Предполагается, что случайные величины М1 и М2, Δх1 Δу1 и Δх2, Δу2 независимы и распределены по гауссовскому закону, их математические ожидания соответственно равны mM1=mM2=100 кг, mΔx1=mΔy1=mΔx2=mΔy2=0, а средние квадратические отклонения равны σM1=σM2=0,5 кг, σΔx1=σΔy1=σΔx2=σΔy2=3 мм. Определить границы симметричных интервалов для координат хс и ус центра масс ротора вместе с деталями, вероятность нахождения в которых равна α=0,99.

58.7. Однородная прямоугольная платформа массы 1000 кг подвешена к опоре на четырех тросах одинаковой длины, сходящихся в одной точке. Расстояние платформы до точки подвеса равно h=2 м. На платформу установлены четыре груза малых размеров. Массы и расположение грузов случайны. Предполагается, что массы грузов и их прямоугольные координаты хi и уi, отсчитываемые от центра платформы, взаимно независимы и имеют гауссовское распределение. Математические ожидания масс всех четырех грузов одинаковы и равны mM=100 кг, среднеквадратические отклонения также одинаковы и равны σM=20 кг. Координаты грузов имеют нулевые математические ожидания, средние квадратические отклонения координат равны σх=0,5 м и σу=0,7 м. Определить границы таких симметричных интервалов для углов наклона θx и θy платформы, находящейся в равновесии при установленных грузах, вероятности нахождения в которых равны 0,99 Углы считать малыми

59.1. Самолет летит из начального в конечный пункт, расстояние между которыми равно 1500 км. Скорость полета v постоянна во времени для каждого полета, но для разных полетов принимает различные значения. Предполагается, что скорость представляет собой случайную величину с гауссовским распределением, с математическим ожиданием mv=250 м/с и средним квадратическим отклонением σv=10 м/с. Определить симметричный интервал для времени полета, соответствующий вероятности 0,999.

59.2. Самолет летит по прямой линии от начального пункта. Угол ψ отклонения этой прямой от заданной прямолинейной траектории в разных полетах может принимать различные значения. Предполагается, что угол ψ является случайной величиной с гауссовским распределением, его математическое ожидание равно нулю, а среднее квадратическое отклонение равно σψ =2°. Определить значения вероятности того, что на расстояниях L=50; 100; 200 км боковое отклонение от заданной траектории не превысит 5 км.

59.3. Поезд двигался с начальной скоростью 15 м/с. При торможении ускорение замедленного движения постоянно во времени, но может принимать различные значения. Предполагается, что ускорение w является случайной величиной с гауссовским распределением, с математическим ожиданием mw=-0,2 м/с^2 и средним квадратическим отклонением σw=0,03 м/с2. Определить математическое ожидание и среднее квадратическое отклонение тормозного расстояния до остановки, а также верхнюю границу тормозного расстояния, вероятность превышения которой составляет 0,05.

59.4. При расчетной оценке точности стрельбы в мишень принимается, что скорость полета пули постоянна, учитывается случайное отклонение оси ствола и случайное отличие скорости пуль от номинального значения. Считается, что пуля попадает точно в центр мишени, если при точном задании направления оси ствола скорость вылета равна номинальному значению 600 м/с. Углы отклонения φ и ψ оси ствола от заданного направления и отличие Δv скорости вылета от номинального значения считаются независимыми случайными величинами с гауссовским распределением, с нулевыми математическими ожиданиями и со средними квадратическими отклонениями соответственно σφ=σψ=0,5*10^-3 рад и σv=75 м/с. Расстояние до мишени равно l=50 м. Определить симметричные интервалы для горизонтального и вертикального смещений точек попадания в мишень относительно ее центра, соответствующие вероятности 0,99.

59.5. Снаряд выпущен из орудия с поверхности Земли. Угол бросания φ и начальная скорость v0 могут отличаться от расчетных значений; они считаются независимыми случайными величинами с гауссовским распределением, с математическими ожиданиями, равными расчетным значениям mφ=10° и mv0=1000 м/с, со средними квадратическими отклонениями σφ=0,1 и σv0=10 м/с. Пренебрегая силой сопротивления воздуха, определить интервал дальностей возможных точек падения снаряда на Землю, соответствующий вероятности 0,90. В выражении приращения дальности сохранить слагаемые только первого порядка относительно отклонений угла и скорости от расчетных значений.

59.6. Вагон, центр масс которого находится на высоте 2,5 м от уровня полотна железной дороги с шириной колеи 1,5 м, движется по криволинейному участку с радиусом кривизны ρ=800 м. Подъем наружного рельса над уровнем внутреннего выбран так, чтобы при скорости вагона, равной v=20 м/с, давление колес на оба рельса было одинаковым. В действительности скорость вагона может быть различной. Принимается, что скорость является случайной величиной с гауссовским распределением, с математическим ожиданием mv=15 м/с и средним квадратическим отклонением σv=4 м/с. Определить отношение сил давления колес на внешний и внутренний рельсы при скорости, соответствующей верхней границе интервала, определенного для вероятности α=0,99.

59.7. Автомашина движется по дороге без уклона со скоростью 15 м/с. При торможении сила трения постоянна во времени, но может принимать различные значения. Принимается, что удельная сила трения при торможении является случайной величиной с гауссовским распределением, ее математическое ожидание равно 3000 Н на 1 т массы, а среднее квадратическое отклонение составляет 700 Н на 1 т массы. Определить значения вероятности того, что тормозной путь до остановки превысит 40 м; 80 м.

59.8. Ротор массы М, представляющий собой однородный цилиндр радиуса R и длины l, насажен на вал с перекосом и смещением, так что его ось симметрии отклонена от оси вала на малый случайный угол γ, а его центр, расположенный посередине между подшипниками, смещен относительно оси вала на случайную величину h. Расстояние между подшипниками равно 2L. Предполагается, что γ и h представляют собой независимые случайные величины, угол у имеет нулевое математическое ожидание, расстояние h-математическое ожидание тн и средние квадратические отклонения соответственно равны σγ и σh. Угловая скорость ω вращения ротора вокруг вертикальной оси считается случайной величиной с математическим ожиданием mω и средним квадратическим отклонением σω. Определить средние квадратические отклонения σR1 и σR2 реакций подшипников R1 и R2.

59.9. На груз массы 1 кг, подвешенный на нити длины 1 м, в начальный момент времени находившийся в состоянии покоя на одной вертикали с точкой подвеса, кратковременно действует горизонтальная сила, постоянная во времени в течение интервала действия. Сила F и интервал времени ее действия τ являются независимыми случайными величинами с гауссовским распределением, с математическими ожиданиями, равными соответственно mF==300 Н и mτ=0,01 с и средними квадратическими отклонениями, равными σF=5 Н и στ=0,002 c. Определить значения вероятности того, что амплитуда свободных колебаний груза на нити после окончания удара превысит 60° и 90°.

59.10. Груз падает с высоты Н на упругую пружину, массой которой по сравнению с массой груза можно пренебречь. Статический прогиб пружины под грузом равен 2 мм. Высота Н считается случайной величиной с гауссовским распределением, с математическим ожиданием, равным 1 м, и средним квадратическим отклонением, равным 0,3 м. Определить верхнюю границу интервала возможных изменений максимального значения ускорения при ударе для вероятности нахождения в этом интервале, равной 0,95.

59.11. Длина l математического маятника известна неточно. Предполагается, что l представляет собой случайную величину с гауссовским распределением, с известным математическим ожиданием ml=0,25 мне неизвестным средним квадратическим отклонением σl. Определить допустимое значение σl, при котором значения периода свободных малых колебаний различаются не более, чем на 0,1 % с вероятностью 0,99.

59.12 Физический маятник представляет собой тело массы m, вращающееся вокруг горизонтальной оси; его момент инерции J и смещение l центра масс относительно оси считаются заданными. Силы сопротивления, пропорциональные скорости, таковы, что при свободных колебаниях маятника отношение предыдущего размаха к последующему равно q. Точка подвеса маятника совершает горизонтальные случайные колебания. Ускорение w точки подвеса можно считать белым шумом постоянной интенсивности В^2. Определить установившееся среднее квадратическое значение угла отклонения маятника при вынужденных колебаниях, а также среднее число выбросов n угла за уровень, в 2 раза превышающий среднее квадратическое значение в течение времени Т.

59.13. Точка подвеса физического маятника, частота свободных колебаний которого равна k=15 рад/с, а отношение последующего размаха к предыдущему при свободных колебаниях равно m=1,2, совершает горизонтальные случайные колебания. Скорость точки подвеса при колебаниях можно считать белым шумом интенсивности D^2=1000 м2/с. Определить среднее квадратическое значение угла отклонения маятника.

59.14. Прибор установлен на упругих линейных амортизаторах на подвижном основании, совершающем вертикальные случайные колебания. Силы сопротивления при колебаниях прибора относительно основания таковы, что в режиме свободных колебаний отношение предыдущего размаха к последующему равно m=1,5. Вертикальное ускорение при колебаниях основания можно считать белым шумом интенсивности В^2=100. Определить, каковы должны быть частота свободных колебаний прибора на амортизаторах и статическое смещение под действием силы тяжести, чтобы среднее квадратическое значение абсолютного ускорения w при вынужденных колебаниях прибора было равно σw=50 м/с2.

59.15. Линейный акселерометр, основным элементом которого, является инерционная масса, связанная линейной пружиной с корпусом и находящаяся в вязкой жидкости, имеет аплитудно-частотную характеристику с резонансным пиком, причем частота, соответствующая пику, равна ω0=100 рад/с, а относительная высота резонансного пика (по отношению к значению амплитудночастотной характеристики при ω=0) равна 1,4. При тарировке акселерометра получено, что если установить его измерительную ось вертикально, а затем повернуть акселерометр на 180°, его выходной сигнал, пропорциональный смешению инерционной массы, изменится на 5 B. Акселерометр установлен на подвижном основании, совершающем случайные колебания по одной оси, по этой же оси направлена измерительная ось акселерометра. Предполагается, что случайное ускорение колебаний основания можно считать белым шумом. Определить интенсивность этого белого шума, если осредненное значение квадрата переменной составляющей выходного сигнала акселерометра составляет 100 В^2.

59.16. На одном и том же основании, совершающем горизонтальные случайные колебания по одной оси, горизонтально установлены три линейных акселерометра, имеющих одинаковые статические характеристики, но различные динамические свойства. Первый из них имеет собственную частоту ω0 и относительную высоту резонансного пика, равную 1,2, второй-ту же собственную частоту, но относительную высоту резонансного пика, равную 1,6, третий-собственную частоту 2ω0, а относительную высоту резонансного пика, как у первого акселерометра. Предполагая, что случайное ускорение при колебаниях основания можно считать белым шумом, определить, насколько различаются средние квадратические значения σ1, σ2 и σ3 выходных сигналов этих акселерометров.

51.1 Определить концентрацию n свободных электронов в металле при температуре T=0 К. Энергию Ферми ε принять равной 1 эВ.

51.2. Определить отношение концентраций n1/n2 свободных электронов при T=0 в литии и цезии, если известно, что уровни Ферми в этих металлах соответственно равны еj,1=4,72 эВ, ej,2=1,53 эВ.

51.3. Определить число свободных электронов, которое приходится на один атом натрия при температуре T=0 К. Уровень Ферми ej для натрия равен 3,12 эВ. Плотность ρ натрия равна 970 кг/м^3.

51.4. Во сколько раз число свободных электронов, приходящихся на один атом металла при T=0. больше в алюминии, чем в меди, если уровни Ферми соответственно равны ej1=11,7 эВ, ej2=7,0 эВ?

51.5. Определить вероятность того, что электрон в металле займет энергетическое состояние, находящееся в интервале Δe=0,05 эВ ниже уровня Ферми и выше уровня Ферми, для двух температур: 1) T1=290 К; 2) T2=58 К.

51.6. Вычислить среднюю кинетическую энергию e электронов в металле при температуре T=0 К, если уровень Ферми ej=7 эВ.

51.7. Металл находится при температуре T=0 К. Определить, во сколько раз число электронов с кинетической энергией от ef/2 до ef, больше числа электронов с энергией от 0 до ef/2.

online-tusa.com