На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
3.16. На двухконсольную горизонтальную балку действует пара сил (P, P), на левую консоль-равномерно распределенная нагрузка интенсивности q, а в точке D правой консоли-вертикальная нагрузка Q. Определить реакции опор, если P=1 кН, Q=2 кН, q=2 кН/м, a=0,8 м
3.17. На балке AB длины 10 м уложен путь для подъемного крана. Вес крана равен 50 кН, и центр тяжести его находится на оси CD; вес груза P равен 10 кН; вес балки AB равен 30 кН; вылет крана KL=4 м; расстояние AC=3 м. Найти опорные реакции в точках A и B для такого положения крана, когда стрелка крана DL находится в одной вертикальной плоскости с балкой AB.
3.18. Балка AB длины l м несет распределенную нагрузку, показанную на рисунке. Интенсивность нагрузки равна q Н/м на концах A и B балки и 2q Н/м в середине балки. Пренебрегая весом балки, найти реакции опор D и B
3.19. Горизонтальная балка AC, опертая в точках B и C, несет между опорами B и C равномерно распределенную нагрузку интенсивности q Н/м; на участке AB интенсивность нагрузки уменьшается по линейному закону до нуля. Найти реакции опор B и C, пренебрегая весом балки.
3.20. Прямоугольный щит AB ирригационного канала может вращаться относительно оси O. Если уровень воды невысок, щит закрыт, но, когда вода достигает некоторого уровня H, щит поворачивается вокруг оси и открывает канал. Пренебрегая трением и весом щита, определить высоту H, при которой открывается щит.
3.21. Предохранительный клапан A парового котла соединен стержнем AB с однородным рычагом CD длины 50 см и веса 10 Н, который может вращаться вокруг неподвижной оси C; диаметр клапана d=6 см, плечо BC=7 см. Какой груз Q нужно подвесить к концу D рычага для того, чтобы клапан сам открывался при давлении в котле, равном 1100 кПа?
3.22. Несколько одинаковых однородных плит длины 2l сложены так, что часть каждой плиты выступает над плитой нижележащей. Определить предельные длины выступающих частей, при которых плиты будут находиться в равновесии.
3.23. Железнодорожный кран опирается на рельсы, расстояние между которыми равно 1,5 м. Вес тележки крана равен 30 кН, центр тяжести ее находится в точке A, лежащей на линии KL пересечения плоскости симметрии тележки с плоскостью рисунка. Вес лебедки B крана равен 10 кН, центр тяжести ее лежит в точке C на расстоянии 0,1 м от прямой KL. Вес противовеса D равен 20 кН, центр тяжести его лежит в точке E на расстоянии 1 м от прямой KL. Вес укосины FG равен 5 кН, и центр тяжести ее находится в точке H на расстоянии 1 м от прямой KL. Вылет крана LM=2 м. Определить наибольший груз Q, который не опрокинет крана.
3.24. Центр тяжести передвижного рельсового крана, вес которого (без противовеса) равен P1=500 кН, находится в точке C, расстояние которой от вертикальной плоскости, проходящей через правый рельс, равно 1,5 м. Крановая тележка рассчитана на подъем груза P2=250 кН; вылет ее равен 10 м. Определить наименьший вес Q и наибольшее расстояние x центра тяжести противовеса от вертикальной плоскости, проходящей через левый рельс B так, чтобы кран не опрокинулся при всех положениях тележки как нагруженной, так и ненагруженной. Собственным весом тележки пренебречь.
3.25. Кран для загрузки материалов в мартеновскую печь состоит из лебедки A, ходящей на колесах по рельсам, уложенным на балках передвижного моста B. К нижней части лебедки прикреплена опрокинутая колонна D, служащая для укрепления лопаты C. Какой вес P должна иметь лебедка с колонной, чтобы груз Q=15 кН, помещенный на лопате на расстоянии 5 м от вертикальной оси OA лебедки, не опрокидывал ее? Центр тяжести лебедки расположен на оси OA; расстояние каждого колеса от оси OA равно 1 м
3.26. Подъемный кран установлен на каменном фундаменте. Вес крана Q=25 кН и приложен в центре тяжести A на расстоянии AB=0,8 м от оси крана; вылет крана CD=4 м. Фундамент имеет квадратное основание, сторона которого EF=2 м; удельный вес кладки 20 кН/м^3. Вычислить наименьшую глубину фундамента, если кран предназначен для подъема тяжестей до 30 кН, причем фундамент должен быть рассчитан на опрокидывание вокруг ребра F.
3.27. Магнитная стрелка подвешена на тонкой проволоке и установлена горизонтально в магнитном меридиане. Горизонтальные составляющие силы земного магнитного поля, действующие на полюсы стрелки в противоположных направлениях, равны каждая 0,02 мН, расстояние между полюсами 10 см. На какой угол нужно закрутить проволоку, чтобы стрелка составила угол 30° с магнитным меридианом, если известно, что для закручивания проволоки на угол 1° нужно приложить пару, момент которой равен 0,05 мН*см?
3.28. Два однородных стержня AB и BC одинакового поперечного сечения, из которых AB вдвое короче BC, соединенные своими концами под углом 60°, образуют ломаный рычаг ABC. Y конца A рычаг подвешен на нити AD. Определить угол α наклона стержня BC к горизонту при равновесии рычага; поперечными размерами стержней пренебречь.
3.29. Два стержня AB и OC, вес единицы длины которых равен 2p, скреплены под прямым углом в точке C. Стержень OC может вращаться вокруг горизонтальной оси O; AC=CB=a, OC=b. В точках A и B подвешены гири, веса которых P1 и P2; P2>P1. Определить угол α наклона стержня AB к горизонту в положении равновесия.
3.30. Подъемный мост AB поднимается посредством двух брусьев CD длины 8 м, веса 4 кН, по одному с каждой стороны моста; длина моста AB=CE=5 м; длина цепи AC=BE; вес моста 30 кН и может считаться приложенным в середине AB. Рассчитать вес противовесов P, уравновешивающих мост.
3.31. Главную часть дифференциального блока составляют два неизменно связанных между собой шкива A, ось которых подвешена к неподвижному крюку. Желоба их снабжены зубцами, захватывающими бесконечную цепь, образующую две петли, в одну из которых помещен подвижной блок B. К подвижному блоку подвешен поднимаемый груз Q, а к свисающей с большого блока ветви свободной петли приложено усилие P. Радиусы шкивов A суть R и r, причем r<R. Требуется найти зависимость усилия P от величины поднимаемого груза Q и определить это усилие в случае: Q=500 Н, R=25 см, r=24 см. Трением пренебречь.
3.32. Дифференциальный рычаг состоит из стержня AB, имеющего неподвижную опорную призму в точке C, и перекладины DE, соединенной с рычагом AB посредством шарнирных серег AD и EF. Груз Q=1 кН подвешен к перекладине в точке G посредством призмы. Расстояние между вертикалями, проведенными через точки C и G, равно 1 мм. Определить вес гири P, которую нужно подвесить к рычагу AB в точке H на расстоянии CH=1 м для того, чтобы уравновесить груз Q. Трением пренебречь.
3.33. В шарнирном четырехзвенном механизме звено BC параллельно неподвижному звену AD. Звено AB=h перпендикулярно AD. Посредине AB приложена горизонтальная сила P. Какую горизонтальную силу Q следует приложить к звену CD в точке E, если CE=CD/4, чтобы механизм был в равновесии? Найти реакцию в шарнире D. Весом звеньев пренебречь.
3.34. Для измерения больших усилий Q устроена система двух неравноплечих рычагов ABC и EDF, соединенных между собой тяжем CD. В точках B и E имеются неподвижные опоры. По рычагу EDF может передвигаться груз P веса 125 Н. Сила Q, приложенная в точке A, уравновешивается этим грузом, помещенным на расстоянии l от точки D. На какую длину x надо передвинуть для сохранения равновесия груз P при увеличении силы Q на 10 кН, если указанные на рисунке размеры соответственно равны: a=3,3 мм, b=660 мм, c=50 мм?
3.35. Балка AB длины 4 м, веса 2 кН может вращаться вокруг горизонтальной оси A и опирается концом B на другую балку CD длины 3 м, веса 1,6 кН, которая подперта в точке E и соединена со стеной шарниром D. В точках M и N помещены грузы по 0,8 кН каждый. Расстояния: AM=3 м, ED=2 м, ND=1 м. Определить опорные реакции.
3.36. Консольный мост состоит из трех частей: AC, CD и DF, из которых крайние опираются каждая на две опоры. Размеры соответственно равны: AC=DF=70 м, CD=20 м, AB=EF=50 м. Погонная нагрузка на мост равна 60 кН/м. Найти давления на опоры A и B, производимые этой нагрузкой.
3.37. Консольный мост состоит из главной фермы AB и двух боковых ферм AC и BD. Собственный вес, приходящийся на погонный метр фермы AB, равен 15 кН, а для ферм AC и BD равен 10 кН. Определить реакции всех опор в тот момент, когда весь правый пролет FD занят поездом, вес которого можно заменить равномерно распределенной по пролету FD нагрузкой интенсивности 30 кН на погонный метр. Размеры соответственно равны: AC=BD=20 м; AE=BF=15 м; EF=50 м.
3.38. Для осмотра на плаву днища понтона водоизмещением D=2000 кН его носовая оконечность поднимается краном грузоподъемности P=750 кН. Принимая удельный вес воды γ=10 кН/м^3, определить наибольший подъем днища над уровнем воды h, если понтон имеет форму прямоугольного параллелепипеда длины L=20 м, ширины B=10 м. Центр тяжести понтона C лежит посередине его длины. Точка K крепления троса подъемного крана и центр тяжести C находится на одинаковом расстоянии от днища понтона. (Водоизмещение судна численно равно его весу.)
4.1. К однородному стержню AB, который может вращаться вокруг шарнира A, подвешена в точке B на веревке гиря C веса в 10 Н. От конца стержня B протянут трос, перекинутый через блок D и поддерживающий гирю веса в 20 Н. Найти величину угла BAD=α, при котором стержень будет находиться в положении равновесия, зная, что AB=AD и вес стержня 20 Н. Трением на блоке пренебречь.
4.2 Горизонтальная балка крана, длина которой равна l, у одного конца укреплена шарнирно, а у другого конца B подвешена к стене посредством тяги BC, угол наклона которой к горизонту равен α. По балке может перемещаться груз P, положение которого определяется переменным расстоянием x до шарнира A. Определить натяжение T тяги BC в зависимости от положения груза. Весом балки пренебречь.
online-tusa.com
|
SHOP