На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
37.29 Часть прибора представляет собой однородный стержень длины L, свободно подвешенный одним концом на горизонтальной оси O. Для регистрации качаний стержня к его нижнему концу приклеивается небольшое зеркало массы m. При этом, чтобы частота колебаний стержня не изменилась, на нем в другом месте укрепляется груз A. Рассматривая зеркало и груз как материальные точки, найти минимальную массу, которую должен иметь груз A. На каком расстоянии от оси O его следует прикрепить?
37.30 Для регулирования хода часов к маятнику массы M1, приведенной длины l с расстоянием a от его центра тяжести до оси подвеса прикрепляют добавочный груз массы M2 на расстоянии x от оси подвеса. Принимая добавочный груз за материальную точку, определить изменение Δl приведенной длины маятника при данных значениях M2 и x и значение x=x1, при котором заданное изменение Δl приведенной длины маятника достигается при помощи добавочного груза наименьшей массы.
37.31 Для определения момента инерции J данного тела относительно некоторой оси AB, проходящей через центр масс G тела, его подвесили жестко скрепленными с ним стержнями AD и BE, свободно насаженными на неподвижную горизонтальную ось DE, так, что ось AB параллельна DE; приведя затем тело в колебательное движение, определили продолжительность T одного размаха. Как велик момент инерции J, если масса тела M и расстояние между осями AB и DE равно h? Массами стержней пренебречь.
37.32 Решить предыдущую задачу с учетом массы тонких однородных прямолинейных стержней AD и BE, если масса каждого из них равна M1.
37.33 Для определения момента инерции шатуна его заставляют качаться вокруг горизонтальной оси, продев через втулку цапфы крейцкопфа тонкий цилиндрический стержень. Продолжительность ста размахов 100T=100 c, где T-половина периода. Затем для определения расстояния AC=h центра масс C от центра A отверстия шатун положили горизонтально, подвесив его в точке A к талям и оперев точкой B на платформу десятичных весов; давление на нее оказалось при этом равным P. Определить центральный момент инерции J шатуна относительно оси, перпендикулярной плоскости рисунка, имея следующие данные: масса шатуна M, расстояние между вертикалями, проведенными через точки A и B (см. правый рисунок) равно l, радиус цапфы крейцкопфа r.
37.34 Маятник состоит из стержня AB с прикрепленным к нему шаром массы m и радиуса r, центр которого C находится на продолжении стержня. Определить, пренебрегая массой стержня, в какой точке стержня нужно поместить ось подвеса для того, чтобы продолжительность одного размаха при малых качаниях имела данную величину T.
37.35 На каком расстоянии от центра масс должен быть подвешен физический маятник, чтобы период его качаний был наименьшим?
37.36 Маятник состоит из стержня с двумя закрепленными на нем грузами, расстояние между которыми равно l; верхний груз имеет массу m1, нижний-массу m2. Определить, на каком расстоянии x от нижнего груза нужно поместить ось подвеса для того, чтобы период малых качаний маятника был наименьшим; массой стержня пренебречь и грузы считать материальными точками.
37.37 На каком расстоянии от оси подвеса должен быть присоединен к физическому маятнику добавочный груз, чтобы период качаний маятника не изменился?
37.38 Круглый цилиндр массы M, длины 2l и радиуса r=l/6 качается около оси O, перпендикулярной плоскости рисунка. Как изменится период качаний цилиндра, если прикрепить к нему на расстоянии OK=85l/72 точечную массу m?
37.39 Найти уравнение малых колебаний однородного диска массы M и радиуса r, совершающего колебания вокруг горизонтальной оси Oz, перпендикулярной его плоскости и отстоящей от центра масс C диска на расстоянии OC=r/2. К диску приложен вращающий момент mвр, причем mвр z=m0 sin pt, где m0 и p-постоянные. В начальный момент диску, находившемуся в нижнем положении, была сообщена угловая скорость ω0. Силами сопротивления пренебречь. Считая колебания малыми, принять sin φ≈φ.
37.40 В сейсмографах-приборах для регистрации землетрясений-применяется физический маятник, ось подвеса которого образует угол α с вертикалью. Расстояние от оси подвеса до центра масс маятника равно a, момент инерции маятника относительно оси, проходящей через его центр масс параллельно оси подвеса, равен JC, масса маятника равна M. Определить период колебаний маятника
37.41 В вибрографе для записи горизонтальных колебаний фундаментов машин маятник OA, состоящий из рычага с грузом на конце, может качаться вокруг своей горизонтальной оси O, удерживаясь в вертикальном положении устойчивого равновесия собственной массой и спиральной пружиной. Определить период собственных колебаний маятника при малых углах отклонения, если максимальный статический момент силы тяжести маятника относительно его оси вращения равен Mgh, момент инерции относительно той же оси равен Jz, коэффициент жесткости пружины, сопротивление которой пропорционально углу закручивания, равен c; при равновесном положении маятника пружина находится в ненапряженном состоянии. Сопротивлениями пренебречь.
37.42 Виброграф (см. предыдущую задачу) закреплен на фундаменте, совершающем горизонтальные гармонические колебания по закону x=a sin ωt. Определить амплитуду a колебаний фундамента, если амплитуда вынужденных колебаний маятника вибрографа оказалась равной φ0
37.43 При пуске в ход электрической лебедки к барабану A приложен вращающий момент mвр, пропорциональный времени, причем mвр=at, где a-постоянная. Груз B массы M1 поднимается посредством каната, навитого на барабан A радиуса r и массы M2. Определить угловую скорость барабана, считая его сплошным цилиндром. В начальный момент лебедка находилась в покое.
37.44 Для определения момента инерции J махового колеса A радиуса R относительно оси, проходящей через центр масс, колесо обмотали тонкой проволокой, к которой привязали гирю B массы M1 и наблюдали продолжительность T1 опускания гири с высоты h. Для исключения трения в подшипниках проделали второй опыт с гирей массы M2, причем продолжительность опускания оказалась равной T2 при прежней высоте. Считая момент силы трения постоянным и не зависящим от массы гири, вычислить момент инерции J.
37.45 К валу I присоединен электрический мотор, вращающий момент которого равен m1. Посредством редуктора скоростей, состоящего из четырех зубчатых колес 1, 2, 3 и 4, этот вращающий момент передается на шпиндель III токарного станка, к которому приложен момент сопротивления m2 (этот момент возникает при снятии резцом стружки с обтачиваемого изделия). Определить угловое ускорение шпинделя III, если моменты инерции всех вращающихся деталей, насаженных на валы I, II и III, соответственно равны JI, JII, JIII. Радиусы колес равны r1, r2, r3 и r4.
37.46 Барабан A массы M1 и радиуса r приводится во вращение посредством груза C массы M2, привязанного к концу нерастяжимого троса. Трос переброшен через блок B и намотан на барабан A. К барабану A приложен момент сопротивления mс, пропорциональный угловой скорости барабана; коэффициент пропорциональности равен α. Определить угловую скорость барабана, если в начальный момент система находилась в покое. Массами каната и блока B пренебречь. Барабан считать сплошным однородным цилиндром.
37.47 Определить угловое ускорение ведущего колеса автомашины массы M и радиуса r, если к колесу приложен вращающий момент mвр. Момент инерции колеса относительно оси, проходящей через центр масс C перпендикулярно плоскости материальной симметрии, равен Jc; fк-коэффициент трения качения, Fтр-сила трения. Найти также значение вращающего момента, при котором колесо катится с постоянной угловой скоростью.
37.48 Определить угловую скорость ведомого автомобильного колеса массы M и радиуса r. Колесо, катящееся со скольжением по горизонтальному шоссе, приводится в движение посредством горизонтально направленной силы, приложенной в его центре масс C. Момент инерции колеса относительно оси C, перпендикулярной плоскости материальной симметрии, равен Jc; fк-коэффициент трения качения, f-коэффициент трения при качении со скольжением. В начальный момент колесо находилось в покое.
37.49 Изменится ли угловая скорость колеса, рассмотренного в предыдущей задаче, если модуль силы, приложенной в его центре масс C, увеличится в два раза?
37.50 Через блок, массой которого пренебрегаем, перекинут канат; за точку A каната ухватился человек, к точке B подвязан груз одинаковой массы с человеком. Что произойдет с грузом, если человек станет подниматься по канату со скоростью v относительно каната?
37.51 Решить предыдущую задачу, принимая во внимание массу блока, которая в четыре раза меньше массы человека. Считать, что масса блока равномерно распределена по его ободу.
37.52 Круглая горизонтальная платформа может вращаться без трения вокруг неподвижной оси Oz, проходящей через ее центр O; по платформе на неизменном расстоянии от оси Oz, равном r, идет с постоянной относительной скоростью u человек, масса которого равна M1. С какой угловой скоростью ω будет при этом вращаться платформа вокруг оси, если массу ее M2 можно считать равномерно распределенной по площади круга радиуса R, а в начальный момент платформа и человек имели скорость, равную нулю?
37.53 Круглая горизонтальная платформа вращается без трения вокруг вертикальной оси, проходящей через ее центр масс, с постоянной угловой скоростью ω0; при этом на платформе стоят четыре человека одинаковой массы: два-на краю платформы, а два-на расстояниях от оси вращения, равных половине радиуса платформы. Как изменится угловая скорость платформы, если люди, стоящие на краю, будут двигаться по окружности в сторону вращения с относительной линейной скоростью u, а люди, стоящие на расстоянии половины радиуса от оси вращения, будут двигаться по окружности в противоположную сторону с относительной линейной скоростью 2u? Людей считать точечными массами, а платформу-круглым однородным диском.
online-tusa.com
|
SHOP