На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

Число записей в разделе: 13282

18.17. Уединенный металлический шар радиусом R1=6 см несет заряд Q. Концентрическая этому шару поверхность делит пространство на две части (внутренняя конечная и внешняя бесконечная), так что энергии электрического поля обеих частей одинаковы. Определить радиус R2 этой сферической поверхности

18.18. Сплошной парафиновый шар радиусом R=10 см заряжен равномерно по объему с объемной плотностью ρ=10 нКл/м^3. Определить энергию W1 электрического поля, сосредоточенную в самом шаре, и энергию W2 вне его

18.19. Эбонитовый шар равномерно заряжен по объему. Во сколько раз энергия электрического поля вне шара превосходит энергию поля, сосредоточенную в шаре?

17 пример 1. Определить электрическую емкость C плоского конденсатора с двумя слоями диэлектриков: фарфора толщиной d1=2 мм и эбонита толщиной d2=1,5 мм, если площадь S пластин равна 100 см^2.

17 пример 2. Два плоских конденсатора одинаковой электроемкости C1=C2=C соединены в батарею последовательно и подключены к источнику тока с электродвижущей силой ξ. Как изменится разность потенциалов U1 на пластинах первого конденсатора, если пространство между пластинами второго конденсатора, не отключая источника тока, заполнить диэлектриком с диэлектрической проницаемостью ε=7?

17.1 Найти электроемкость C уединенного металлического шара радиусом R=1 см

17.2 Определить электроемкость C металлической сферы радиусом R=2 см, погруженной в воду

17.3 Определить электроемкость C Земли, принимая ее за шар радиусом R=6400 км

17.4 Два металлических шара радиусами R1=2 см и R2=6 см соединены проводником, емкостью которого можно пренебречь. Шарам сообщен заряд Q=1 нКл. Найти поверхностную плотность σ зарядов на шарах.

17.5 Шар радиусом R1=6 см заряжен до потенциала φ1=300 B, а шар радиусом R2=4 см-до потенциала φ2=500 B. Определить потенциал φ шаров после того, как их соединили металлическим проводником. Емкостью соединительного проводника пренебречь

17.6 Определить электроемкость C плоского слюдяного конденсатора, площадь S пластин которого равна 100 см^2, а расстояние между ними равно 0,1 мм.

17.7. Между пластинами плоского конденсатора, заряженного до разности потенциалов U=600 B, находятся два слоя диэлектриков: стекла толщиной d1=7 мм и эбонита толщиной d2=3 мм. Площадь S каждой пластины конденсатора равна 200 см^2. Найти: 1) электроемкость С конденсатора; 2) смещение D, напряженность E поля и падение потенциала Δφ в каждом слое

17.8 Расстояние d между пластинами плоского конденсатора равно 1,33 м, площадь S пластин равна 20 см^2. В пространстве между пластинами конденсатора находятся два слоя диэлектриков: слюды толщиной d1=0,7 мм и эбонита толщиной d2=0,3 мм. Определить электроемкость C конденсатора.

17.9 На пластинах плоского конденсатора равномерно распределен заряд с поверхностной плотностью σ=0,2 мкКл/м^2. Расстояние d между пластинами равно 1 мм. На сколько изменится разность потенциалов на его обкладках при увеличении расстояния d между пластинами до 3 мм?

17.10 В плоский конденсатор вдвинули плитку парафина толщиной d=1 см, которая вплотную прилегает к его пластинам. На сколько нужно увеличить расстояние между пластинами, чтобы получить прежнюю емкость?

17.11 Электроемкость C плоского конденсатора равна 1,5 мкФ. Расстояние d между пластинами равно 5 мм. Какова будет электроемкость C конденсатора, если па нижнюю пластину положить лист эбонита толщиной d1=3 мм?

17.12 Между пластинами плоского конденсатора находится плотно прилегающая стеклянная пластинка. Конденсатор заряжен до разности потенциалов U1=100 B. Какова будет разность потенциалов U2, если вытащить стеклянную пластинку из конденсатора?

17.13 Две концентрические металлические сферы радиусами R1=2 см и R2=2,1 см образуют сферический конденсатор. Определить его электроемкость C, если пространство между сферами заполнено парафином.

17.14 Конденсатор состоит из двух концентрических сфер. Радиус R1 внутренней сферы равен 10 см, внешней R2=10,2 см. Промежуток между сферами заполнен парафином. Внутренней сфере сообщен заряд Q=5 мкКл. Определить разность потенциалов U между сферами.

17.15 К воздушному конденсатору, заряженному до разности потенциалов U=600 В и отключенному от источника напряжения, присоединили параллельно второй незаряженный конденсатор таких же размеров и формы, но с диэлектриком (фарфор). Определить диэлектрическую проницаемость ε фарфора, если после присоединения второго конденсатора разность потенциалов уменьшилась до U1=100 B.

17.16 Два конденсатора электроемкостями C1=3 мкФ и C2=6 мкФ соединены между собой и присоединены к батарее с ЭДС ξ=120 B. Определить заряды Q1 и Q2 конденсаторов и разности потенциалов U1 и U2 между их обкладками, если конденсаторы соединены: 1) параллельно; 2) последовательно.

17.17 Конденсатор электроемкостью C1=0,2 мкФ был заряжен до разности потенциалов U1=320 B. После того как его соединили параллельно со вторым конденсатором, заряженным до разности потенциалов U2=450 B, напряжение U на нем изменилось до 400 B. Вычислить емкость C2 второго конденсатора.

17.18 Конденсатор электроемкостью C1=0,6 мкФ был заряжен до разности потенциалов U1=300 В и соединен со вторым конденсатором электроемкостью C2=0,4 мкФ, заряженным до разности потенциалов U2=150 B. Найти заряд ΔQ, перетекший с пластин первого конденсатора на второй.

17.19 Три одинаковых плоских конденсатора соединены последовательно. Электроемкость C такой батареи конденсаторов равна 89 пФ. Площадь S каждой пластины равна 100 см^2. Диэлектрик-стекло. Какова толщина d стекла?

17.20 Конденсаторы соединены так, как это показано на рис. 17.1. Электроемкости конденсаторов: C1=0,2 мкФ, C2=0,1 мкФ, C3=0,3 мкФ, С4=0,4 мкФ. Определить электроемкость C батареи конденсаторов.

online-tusa.com