На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

55.35 Двухъярусная шарнирно-стержневая система удерживается в вертикальном положении тремя пружинами, как это показано на рисунке. Стержни абсолютна жесткие, однородные: вес на длину l равен G. Полагая коэффициенты жесткости пружин равными c1=с2=^10G/l, определить устойчивость равновесия системы, а также частоты и формы f1 и f2 главных колебаний системы. Массой пружин пренебречь: l1=l2=l.

55.36 Груз массы М укреплен на вершине стойки, жестко связанной с балкой AB, свободно лежащей на двух опорах. Полагая, что момент инерции поперечного сечения J, а модули упругости E балки и стоики одинаковы, определить частоты главных изгибных колебаний системы. Массами балки и стойки пренебречь.

55.37 Фундамент машины массы m1=102*10^2 кг, установленный на упругом грунте, совершает вертикальные вынужденные колебания под действием вертикальной возмущающей силы, меняющейся по закону F=98 sin ωt кН. С целью устранения резонансных колебаний, обнаруживающихся при угловой скорости вала машины ω=100 рад/с, на фундаменте установлен на упругих пружинах гаситель в виде тяжелой рамы. Подобрать массу рамы m и суммарную жесткость пружин с2 гасителя так, чтобы амплитуда вынужденных колебаний фундамента при вышеуказанной скорости вала обратилась в нуль, а амплитуда колебаний гасителя не превосходила А=2 мм.

55.39 Электромотор веса Q1 закреплен на упругом бетонном фундаменте (в виде сплошного параллелепипеда) веса Q2 с коэффициентом жесткости с2, установленном на жестком грунте. Ротор веса Р насажен на упругий горизонтальный вал с коэффициентом жесткости при изгибе c1; эксцентриситет ротора относительно вала r; угловая скорость вала ω. Определить вынужденные вертикальные колебания статора электромотора. Учесть влияние массы фундамента путем присоединения одной трети его массы к массе статора.

55.40 В точке А балки AB (см. задачу 55.14) приложена сила F=F0 sin pt (Fо и p-постоянные), составляющая все время с нитью OA прямой угол и расположенная в плоскости движения балки. Какова должна быть длина b нитей, на которых подвешена балка CD, чтобы амплитуда вынужденных колебаний балки AB равнялась нулю?

55.42 Бак, имеющий форму куба, опирается четырьмя нижними углами на четыре одинаковые пружины; длина стороны куба 2а. Жесткости пружин в направлении осей, параллельных сторонам куба, равны сх, су, cz; момент инерции куба относительна главных центральных осей J. Составить уравнения малых колебаний и определить их частоты в случае сх=су. Масса бака равна М

55.43 Однородная горизонтальная прямоугольная пластина со сторонами а и b опирается своими углами на четыре одинаковые пружины жесткости c; масса пластины М. Определить частоты свободных колебаний.

55.45 При условиях предыдущей задачи найти уравнения движения вагонов и построить формы главных колебаний для случая вагонов равного веса Q1=Q2=Q3=Q, соединенных сцепками одинаковой жесткости с1=с2=c. В начальный момент два вагона находятся в положении равновесия, а крайний правый вагон отклонен на х0 от положения равновесия.

55.46 Найти частоты и формы главных колебаний системы, состоящей из трех одинаковых масс m, закрепленных на балке на одинаковых расстояниях друг от друга и от опор. Балку считать свободно положенной на опоры; длина балки l, момент инерции поперечного сечения J, модуль упругости E.

55.47 Система n одинаковых масс m, соединенных пружинами жесткости c, образует механический фильтр для продольных колебаний. Считая заданным закон поступательного движения левой массы x=x0sinωt, показать, что система является фильтром низких частот, т. е. что после перехода частоты ω через определенную границу амплитуды вынужденных колебаний отдельных масс изменяются в зависимости от номера массы по экспоненциальному закону, а до перехода-по гармоническому.

55.48 Фильтр крутильных колебаний схематизируется в виде длинного вала с насаженными на него дисками. Считая заданным закон движения левого диска в форме θ=θ0 sin ωt, определить вынужденные колебания системы и вычислить амплитуды колебаний отдельных дисков. Моменты инерции дисков J, жесткости участков вала между дисками одинаковы и равны c. Исследовать полученное решение и показать, что система является фильтром низких частот.

55.49 Механическая система, образующая полосовой фильтр для продольных колебаний, состоит из звеньев, каждое из которых образовано массой m, соединенной с массой следующего звена пружиной жесткости c. Параллельно с этой пружиной к массе присоединена пружина жесткости c1, связывающая массу т с неподвижной точкой. Закон продольных колебаний левой массы x=x0 sin ωt задан. Показать, что при значениях ω, лежащих в определенных границах, амплитуды колебаний отдельных масс изменяются с расстоянием по гармоническому закону. Найти соответствующие граничные частоты.

55.50 Система большого числа масс m, насаженных на расстоянии а друг от друга на струну АB, натянутую с усилием Т, и поддерживаемых пружинами жесткости c, является полосовым механическим фильтром поперечных колебаний. Вычислить частоты, отвечающие границам полосы пропускания.

55.51 Нить длины nl подвешена вертикально за один конец и нагружена на равных расстояниях а друг от друга n материальными точками с массами m. Составить уравнения движения. Найти для n=3 частоты поперечных колебаний нити.

55.52 Определить частоты свободных поперечных колебаний натянутой нити с закрепленными концами, несущей на себе n масс m, отстоящих друг от друга на расстояниях l Натяжение нити Р.

54.37 Вертикальный двигатель массы M1 закреплен на фундаменте, имеющем площадь основания S; удельная жесткость грунта равна λ. Длина кривошипа двигателя r, длина шатуна l, угловая скорость вала ω, масса поршня и неуравновешенных частей, совершающих возвратно-поступательное движение, равна М2, масса фундамента М3; кривошип считать уравновешенным при помощи противовеса. Массой шатуна пренебречь. Определить вынужденные колебания фундамента.

54.38 Рассчитать вес фундамента под вертикальный двигатель массы М=10^4 кг таким образом, чтобы амплитуда вынужденных вертикальных колебаний фундамента не превосходила 0,25 мм. Площадь основания фундамента S=100 м2, удельная жесткость грунта, находящегося под фундаментом, λ=490 кН/м3. Длина кривошипа двигателя r=30 см, длина шатуна l=180 см, угловая скорость вала ω=8п рад/с, масса поршня и других неуравновешенных частей, совершающих возвратно-поступательное движение, m=250 кг, кривошип считать уравновешенным при помощи противовеса. Массой шатуна пренебречь.

54.39 Электромотор массы М=1200 кг установлен на свободных концах двух горизонтальных параллельных балок, заделанных вторыми концами в стену. Расстояние от оси электромотора до стены l=1,5 м. Якорь электромотора вращается со скоростью n=50п рад/с, масса якоря m=200 кг центр масс его отстоит от оси вала на расстоянии r=0,05 мм. Модуль упругости мягкой стали, из которой сделаны балки, E=19,6*10^7 Н/см2. Определить момент инерции площади поперечного сечения так, чтобы амплитуда вынужденных колебаний не превосходила 0,5 мм. Весом балки пренебречь.

54.40 Кулачковый механизм для привода клапана может быть схематизирован в виде массы m, прикрепленной с одной стороны с помощью пружины жесткости с к неподвижной точке и получающей с другой стороны через пружину жесткости c1 движение от поступательно движущегося кулачка, профиль которого таков, что вертикальное смещение определяется формулами x1=а [1-cos ωt] при 0≤t≤2п/ω, х2=0 при t>2п/ω. Определить движение массы m

54.41 Для записи крутильных колебаний употребляется торсиограф, состоящий из легкого алюминиевого шкива A, заклиненного на валу В и тяжелого маховичка D, который может свободно вращаться относительно вала B. Вал связан с маховичком D спиральной пружиной жесткости c. Вал В движется по закону φ=ω + φ0 sin ωt (равномерное вращение с наложением гармонических колебаний). Момент инерции маховичка относительно оси вращения J. Исследовать вынужденные колебания маховичка торсиографа.

54.42 Для гашения колебаний коленчатого вала авиационного мотора в противовесе коленчатого вала делается желоб в форме дуги окружности радиуса r с центром, смещенным на AB=l от оси вращения; по желобу может свободно двигаться дополнительный противовес, схематизируемый в виде материальной точки. Угловая скорость вращения вала равна ω. Пренебрегая влиянием силы тяжести, определить частоту малых колебаний дополнительного противовеса.

54.43 К грузу веса P, висящему на пружине жесткости с в начальный момент времени приложена постоянная сила F, действие ко горой прекращается по прошествии времени t. Определить движение груза.

54.44 Определить максимальное отклонение от положения равновесия системы, описанной в предыдущей задаче, в случае действия сил различной продолжительиости: 1) t=0, lim Ft=S 2) t=T/4, 3) t=T/2, где Т-период свободных колебаний системы.

54.45 Найти закон движения маятника, состоящего из материальной точки, висящей на нерастяжимой нити длины l. Точка подвеса маятника движется по заданному закону ε(t) по горизонтальной прямой.

54.46 На материальную точку массы m, подвешенную на пружине жесткости c, действует возмущающая сила, заданная условиями: F=0 при t <0; F=t/τF0 при 0≤t≤τ F=F0 при t >τ. Определить движение точки и найти амплитуду колебаний при t > т.

online-tusa.com