На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

18.28 Шестеренка радиуса R=12 см приводится в движение кривошипом OA, вращающимся вокруг оси O неподвижной шестеренки с тем же радиусом; кривошип вращается с угловым ускорением ε0=8 рад/с^2, имея в данный момент угловую скорость ω=2 рад/с. Определить: 1) ускорение той точки подвижной шестеренки, которая в данный момент совпадает с мгновенным центром скоростей, 2) ускорение диаметрально противоположной точки N и 3) положение мгновенного центра ускорений K.

18.29 Найти положение мгновенного центра ускорений и скорость vK точки фигуры, совпадающей с ним в данный момент, а также ускорение wC точки фигуры, с которой в данный момент совпадает мгновенный центр скоростей, если шестеренка I радиуса r катится внутри неподвижного колеса II радиуса R=2r и кривошип OO1, приводящий в движение бегающую шестеренку, имеет постоянную угловую скорость ω0

18.30 Найти ускорения концов B, C, D, E двух диаметров шестеренки радиуса r1=5 см, катящейся снаружи неподвижной шестеренки радиуса r2=15 см. Подвижная шестеренка приводится в движение при помощи кривошипа OA, вращающегося с постоянной угловой скоростью ω0=3 рад/с вокруг оси O неподвижной шестеренки; один из диаметров совпадает с линией OA, другой-ей перпендикулярен. (См. рисунок к задаче 16.35.)

18.31 Показать, что в момент, когда угловая скорость ω=0, проекции ускорений концов отрезка, совершающего плоское движение, на направление отрезка равны между собой.

18.32 Показать, что в момент, когда угловое ускорение ε=0, проекции ускорений концов отрезка, совершающего плоское движение, на направление, перпендикулярное отрезку, равны между собой.

18.33 Ускорения концов стержня AB длины 10 см, совершающего плоское движение, направлены вдоль стержня навстречу друг другу, причем wA=10 см/с^2, wB=20 см/с2. Определить угловую скорость и угловое ускорение стержня.

18.34 Ускорения концов однородного стержня AB длины 12 см, совершающего плоское движение, перпендикулярны AB и направлены в одну сторону, причем wA=24 см/с^2, wB=12 см/с2. Определить угловую скорость, угловое ускорение стержня, а также ускорение его центра тяжести C.

18.35 Стержень AB длины 0,2 м совершает плоскопараллельное движение. Ускорения его концов A и B перпендикулярны AB, направлены в противоположные стороны и по модулю равны 2 м/с^2. Найти угловую скорость, угловое ускорение стержня и ускорение его середины C.

18.36 Ускорения вершин A и B треугольника ABC, совершающего плоское движение, векторно равны: wB=wA=a. Определить угловую скорость и угловое ускорение треугольника, а также ускорение вершины C.

18.37 Квадрат ABCD со стороною a совершает плоское движение в плоскости рисунка. Найти положение мгновенного центра ускорений и ускорения вершин его C и D, если известно, что в данный момент ускорения двух вершин A и B одинаковы по величине и равны 10 см/с2. Направление ускорений точек A и B совпадает со сторонами квадрата, как указано на рисунке.

18.38 Равносторонний треугольник ABC движется в плоскости рисунка. Ускорение вершин A и B в данный момент времени равны 16 см/с^2 и направлены по сторонам треугольника (см. рисунок). Определить ускорение третьей вершины C треугольника.

18.39 Стержень AB длины 0,2 м движется в плоскости рисунка. Ускорение точки A wA (wA=2 м/с^2) образует угол 45° с осью x, совмещенной со стержнем. Ускорение точки B wB (wB=4,42 м/с2) расположено под углом 60° к оси x. Найти угловую скорость, угловое ускорение стержня и ускорение его середины C.

18.40 Квадрат ABCD со стороною a=2 см совершает плоское движение. В данный момент ускорения вершин его A и B соответственно равны по модулю wA=2 см/с^2, wB=4√2 см/с2 и направлены, как указано на рисунке. Найти мгновенную угловую скорость и мгновенное угловое ускорение квадрата, а также ускорение точки C.

18.41 Найти модуль ускорения середины стержня AB, если известны модули ускорений его концов: wA=10 см/с^2, wB=20 см/с2 и углы, образованные ускорениями с прямой AB: α=10° и β=70°.

19.1 Ось z волчка равномерно описывает вокруг вертикали Oζ круговой конус с углом раствора 2θ. Угловая скорость вращения оси волчка вокруг оси ζ равна ω1, а постоянная угловая скорость собственного вращения волчка равна ω. Определить величину и направление абсолютной угловой скорости Ω волчка.

19.2 Артиллерийский снаряд, двигаясь в атмосфере, вращается вокруг оси z с угловой скоростью ω. Одновременно ось снаряда z вращается с угловой скоростью ω1 вокруг оси ζ, направленной по касательной к траектории центра тяжести C снаряда. Определить скорость точки M снаряда в его вращательном движении, если CM=r и отрезок CM перпендикулярен оси z; угол между осями z и ζ равен γ.

19.3 Конус, высота которого h=4 см и радиус основания r=3 см, катится по плоскости без скольжения, имея неподвижную вершину в точке O. Определить угловую скорость конуса, координаты точки, вычерчивающей годограф угловой скорости, и угловое ускорение конуса, если скорость центра основания конуса vC=48 см/с=const.

19.4 Конус, вершина O которого неподвижна, катится по плоскости без скольжения. Высота конуса CO=18 см, а угол при вершине AOB=90°. Точка C, центр основания конуса, движется равномерно и возвращается в первоначальное положение через 1 c. Определить скорость конца B диаметра AB, угловое ускорение конуса и ускорение точек A и B.

19.5 Конус A обегает 120 раз в минуту неподвижный конус B. Высота конуса OO1=10 см. Определить переносную угловую скорость ωe конуса вокруг оси z, относительную угловую скорость ωr конуса вокруг оси OO1, абсолютную угловую скорость ωa и абсолютное угловое ускорение εa конуса.

19.6 Сохранив условия предыдущей задачи, определить скорости и ускорения точек C и D подвижного конуса.

19.7 Конус II с углом при вершине α2=45° катится без скольжения по внутренней стороне неподвижного конуса I с углом при вершине α1=90°. Высота подвижного конуса OO1=100 см. Точка O1, центр основания подвижного конуса, описывает окружность в 0,5 c. Определить переносную (вокруг оси z), относительную (вокруг оси OO1) и абсолютную угловые скорости конуса II, а также его абсолютное угловое ускорение.

19.8 Сохранив условия предыдущей задачи, определить скорости и ускорения точек O1, M1, M2 подвижного конуса.

19.9 Диск OA радиуса R=4√3 см, вращаясь вокруг неподвижной точки O, обкатывает неподвижный конус с углом при вершине, равным 60°. Найти угловую скорость вращения диска вокруг его оси симметрии, если ускорение wA точки A диска по модулю постоянно и равно 48 см/с^2.

19.10 Тело движется вокруг неподвижной точки. В некоторый момент угловая скорость его изображается вектором, проекции которого на координатные оси равны √3, √5, √7. Найти в этот момент скорость v точки тела, определяемой координатами √12, √20, √28.

19.11 Коническое зубчатое колесо, ось которого пересекается с геометрической осью плоской опорной шестерни в центре последней, обегает пять раз в минуту опорную шестерню. Определить угловую скорость ωr вращения колеса вокруг его оси и угловую скорость ω вращения вокруг мгновенной оси, если радиус опорной шестерни вдвое больше радиуса колеса: R=2r.

online-tusa.com