На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
18.28 Шестеренка радиуса R=12 см приводится в движение кривошипом OA, вращающимся вокруг оси O неподвижной шестеренки с тем же радиусом; кривошип вращается с угловым ускорением ε0=8 рад/с^2, имея в данный момент угловую скорость ω=2 рад/с. Определить: 1) ускорение той точки подвижной шестеренки, которая в данный момент совпадает с мгновенным центром скоростей, 2) ускорение диаметрально противоположной точки N и 3) положение мгновенного центра ускорений K.
18.29 Найти положение мгновенного центра ускорений и скорость vK точки фигуры, совпадающей с ним в данный момент, а также ускорение wC точки фигуры, с которой в данный момент совпадает мгновенный центр скоростей, если шестеренка I радиуса r катится внутри неподвижного колеса II радиуса R=2r и кривошип OO1, приводящий в движение бегающую шестеренку, имеет постоянную угловую скорость ω0
18.30 Найти ускорения концов B, C, D, E двух диаметров шестеренки радиуса r1=5 см, катящейся снаружи неподвижной шестеренки радиуса r2=15 см. Подвижная шестеренка приводится в движение при помощи кривошипа OA, вращающегося с постоянной угловой скоростью ω0=3 рад/с вокруг оси O неподвижной шестеренки; один из диаметров совпадает с линией OA, другой-ей перпендикулярен. (См. рисунок к задаче 16.35.)
18.31 Показать, что в момент, когда угловая скорость ω=0, проекции ускорений концов отрезка, совершающего плоское движение, на направление отрезка равны между собой.
18.32 Показать, что в момент, когда угловое ускорение ε=0, проекции ускорений концов отрезка, совершающего плоское движение, на направление, перпендикулярное отрезку, равны между собой.
18.33 Ускорения концов стержня AB длины 10 см, совершающего плоское движение, направлены вдоль стержня навстречу друг другу, причем wA=10 см/с^2, wB=20 см/с2. Определить угловую скорость и угловое ускорение стержня.
18.34 Ускорения концов однородного стержня AB длины 12 см, совершающего плоское движение, перпендикулярны AB и направлены в одну сторону, причем wA=24 см/с^2, wB=12 см/с2. Определить угловую скорость, угловое ускорение стержня, а также ускорение его центра тяжести C.
18.35 Стержень AB длины 0,2 м совершает плоскопараллельное движение. Ускорения его концов A и B перпендикулярны AB, направлены в противоположные стороны и по модулю равны 2 м/с^2. Найти угловую скорость, угловое ускорение стержня и ускорение его середины C.
18.36 Ускорения вершин A и B треугольника ABC, совершающего плоское движение, векторно равны: wB=wA=a. Определить угловую скорость и угловое ускорение треугольника, а также ускорение вершины C.
18.37 Квадрат ABCD со стороною a совершает плоское движение в плоскости рисунка. Найти положение мгновенного центра ускорений и ускорения вершин его C и D, если известно, что в данный момент ускорения двух вершин A и B одинаковы по величине и равны 10 см/с2. Направление ускорений точек A и B совпадает со сторонами квадрата, как указано на рисунке.
18.38 Равносторонний треугольник ABC движется в плоскости рисунка. Ускорение вершин A и B в данный момент времени равны 16 см/с^2 и направлены по сторонам треугольника (см. рисунок). Определить ускорение третьей вершины C треугольника.
18.39 Стержень AB длины 0,2 м движется в плоскости рисунка. Ускорение точки A wA (wA=2 м/с^2) образует угол 45° с осью x, совмещенной со стержнем. Ускорение точки B wB (wB=4,42 м/с2) расположено под углом 60° к оси x. Найти угловую скорость, угловое ускорение стержня и ускорение его середины C.
18.40 Квадрат ABCD со стороною a=2 см совершает плоское движение. В данный момент ускорения вершин его A и B соответственно равны по модулю wA=2 см/с^2, wB=4√2 см/с2 и направлены, как указано на рисунке. Найти мгновенную угловую скорость и мгновенное угловое ускорение квадрата, а также ускорение точки C.
18.41 Найти модуль ускорения середины стержня AB, если известны модули ускорений его концов: wA=10 см/с^2, wB=20 см/с2 и углы, образованные ускорениями с прямой AB: α=10° и β=70°.
19.1 Ось z волчка равномерно описывает вокруг вертикали Oζ круговой конус с углом раствора 2θ. Угловая скорость вращения оси волчка вокруг оси ζ равна ω1, а постоянная угловая скорость собственного вращения волчка равна ω. Определить величину и направление абсолютной угловой скорости Ω волчка.
19.2 Артиллерийский снаряд, двигаясь в атмосфере, вращается вокруг оси z с угловой скоростью ω. Одновременно ось снаряда z вращается с угловой скоростью ω1 вокруг оси ζ, направленной по касательной к траектории центра тяжести C снаряда. Определить скорость точки M снаряда в его вращательном движении, если CM=r и отрезок CM перпендикулярен оси z; угол между осями z и ζ равен γ.
19.3 Конус, высота которого h=4 см и радиус основания r=3 см, катится по плоскости без скольжения, имея неподвижную вершину в точке O. Определить угловую скорость конуса, координаты точки, вычерчивающей годограф угловой скорости, и угловое ускорение конуса, если скорость центра основания конуса vC=48 см/с=const.
19.4 Конус, вершина O которого неподвижна, катится по плоскости без скольжения. Высота конуса CO=18 см, а угол при вершине AOB=90°. Точка C, центр основания конуса, движется равномерно и возвращается в первоначальное положение через 1 c. Определить скорость конца B диаметра AB, угловое ускорение конуса и ускорение точек A и B.
19.5 Конус A обегает 120 раз в минуту неподвижный конус B. Высота конуса OO1=10 см. Определить переносную угловую скорость ωe конуса вокруг оси z, относительную угловую скорость ωr конуса вокруг оси OO1, абсолютную угловую скорость ωa и абсолютное угловое ускорение εa конуса.
19.6 Сохранив условия предыдущей задачи, определить скорости и ускорения точек C и D подвижного конуса.
19.7 Конус II с углом при вершине α2=45° катится без скольжения по внутренней стороне неподвижного конуса I с углом при вершине α1=90°. Высота подвижного конуса OO1=100 см. Точка O1, центр основания подвижного конуса, описывает окружность в 0,5 c. Определить переносную (вокруг оси z), относительную (вокруг оси OO1) и абсолютную угловые скорости конуса II, а также его абсолютное угловое ускорение.
19.8 Сохранив условия предыдущей задачи, определить скорости и ускорения точек O1, M1, M2 подвижного конуса.
19.9 Диск OA радиуса R=4√3 см, вращаясь вокруг неподвижной точки O, обкатывает неподвижный конус с углом при вершине, равным 60°. Найти угловую скорость вращения диска вокруг его оси симметрии, если ускорение wA точки A диска по модулю постоянно и равно 48 см/с^2.
19.10 Тело движется вокруг неподвижной точки. В некоторый момент угловая скорость его изображается вектором, проекции которого на координатные оси равны √3, √5, √7. Найти в этот момент скорость v точки тела, определяемой координатами √12, √20, √28.
19.11 Коническое зубчатое колесо, ось которого пересекается с геометрической осью плоской опорной шестерни в центре последней, обегает пять раз в минуту опорную шестерню. Определить угловую скорость ωr вращения колеса вокруг его оси и угловую скорость ω вращения вокруг мгновенной оси, если радиус опорной шестерни вдвое больше радиуса колеса: R=2r.
online-tusa.com
|
SHOP