На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

50.45. Период d решетки одномерного кристалла (кристалла, атомы которого образуют цепи, не взаимодействующие друг с другом) равен 0,3 нм. Определить максимальную энергию e max фононов, распространяющихся вдоль этой цепочки атомов. Усредненная скорость v звука в кристалле равна 5 км/с.

50.46. Определить усредненную скорость v звука в кристалле, характеристическая температура θ которого равна 300 К. Межатомное расстояние d в кристалле равно 0,25 нм.

50.47. Вычислить среднюю длину l свободного пробега фононов в кварце SiO2 при некоторой температуре, если при той же температуре теплопроводность λ=13 Вт/(м*К), молярная теплоемкость С=44 Дж/(моль*К) и усредненная скорость v звука равна 5 км/с. Плотность ρ кварца равна 2,65*10^3 кг/м3.

50.48. Найти отношение средней длины l свободного пробега фононов к параметру d решетки при комнатной температуре в кристалле NaCl, если теплопроводность λ при той же температуре равна 71 Вт/(м*К). Теплоемкость вычислить по закону Неймана-Коппа. Относительные атомные массы: АNa=23, Acl=35,5; плотность р кристалла равна 2,17*10^3 кг/м3. Усредненную скорость v звука принять равной 5 км/с.

50.49. Вычислить фононное давление p в свинце при температуре T=42,5 К. Характеристическая температура θD Дебая свинца равна 85 К.

50.50. Определить фононное давление p в меди при температуре T=θD, если 8d=320 К.

50.51. Исходя из законов сохранения энергии и импульса при испускании фотона движущимся атомом, получить формулу доплеровского смещения ^Δω/ω для нерелятивистского случая.

50.52. Вычислить энергию R, которую приобретает атом вследствие отдачи, в трех случаях: 1) при излучении в видимой части спектра (λ=500 нм); 2) при рентгеновском излучении (λ=0,5 нм); 3) при гамма-излучении (λ=5*10^-3 нм). Массу ma атома во всех случаях считать одинаковой и равной 100 a. е. м.

50.53. Уширение спектральной линии излучения атома обусловлено эффектом Доплера и соотношением неопределенностей. Кроме того, вследствие отдачи атома происходит смещение спектральной линии. Оценить для атома водорода относительные изменения (Δλ/λ) длины волны излучения, обусловленные каждой из трех причин. Среднюю скорость (v) теплового движения атома принять равной 3 км/с, время τ жизни атома в возбужденном состоянии-10 не, энергию e излучения атома-10 эВ.

50.54. При испускании γ-фотона свободным ядром происходит смещение и уширение спектральной линии. Уширение обусловлено эффектом Доплера и соотношением неопределенностей, а смещение-явлением отдачи. Оценить для ядра ^57Fe относительные изменения (Δv/v) частоты излучения, обусловленные каждой из трех причин. При расчетах принять среднюю скорость (v) ядра (обусловленную тепловым движением) равной 300 м/с, время τ жизни ядра в возбужденном состоянии-100 не и энергию eγ гамма-излучения равной 15 кэВ.

50.55. Найти энергию ΔE возбуждения свободного покоившегося ядра массы ma, которую оно приобретает в результате захвата гамма-фотона с энергией e.

50.56. Свободное ядро 40 К испустило гамма-фотон с энергией ev=30 кэВ. Определить относительное смещение Δλ/λ спектральной линии, обусловленное отдачей ядра.

50.57. Ядро ^67Zn с энергией возбуждения ΔE=93 кэВ перешло в основное состояние, испустив гамма-фотон. Найти относительное изменение Δeγ/eγ энергии гамма-фотона, возникающее вследствие отдачи свободного ядра.

50.58. Энергия связи Eсв атома, находящегося в узле кристаллической решетки, составляет 20 эВ. Масса m атома равна 80 a. е. м. Определить минимальную энергию eγ гамма-фотона, при испускании которого атом вследствие отдачи может быть вырван из узла решетки.

50.59. Энергия возбуждения ΔE ядра ^191Ir равна 129 кэВ. При какой скорости v сближения источника и поглотителя (содержащих свободные ядра 191Ir) можно вследствие эффекта Доплера скомпенсировать сдвиг полос поглощения и испускания, обусловленных отдачей ядер?

50.60. Источник и поглотитель содержат свободные ядра ^83Kr. Энергия возбуждения ΔE ядер равна 9,3 кэВ. Определить скорость v сближения источника и поглотителя, при которой будет происходить резонансное поглощение гамма-фотона.

50.61. Источник и поглотитель содержат ядра ^161Dy. Энергия возбуждения ΔE ядер равна 26 кэВ, период полураспада Т1/2=28 нс. При какой минимальной скорости vmin сближения источника и поглотителя нарушается мёссбауэровское поглощение гамма-фотона?

50.62. При скорости v сближения источника и поглотителя (содержащих свободные ядра ^153Er), равной 10 мм/с, нарушается мёссбауэровское поглощение гамма-фотона с энергией eγ=98 кэВ. Оценить по этим данным среднее время τ жизни возбужденных ядер 153Er.

50.63 Источник гамма-фотонов расположен над детектором-поглотителем на расстоянии l=20 м. С какой скоростью v необходимо перемещать вверх источник, чтобы в месте расположения детектора было полностью скомпенсировано изменение энергии гамма-фотонов, обусловленное их гравитационным взаимодействием с Землей?

50.64. Найти коэффициент объемного расширения p для анизотропного кристалла, коэффициенты линейного расширения которого по трем взаимно перпендикулярным направлениям составляют α1=1,25*10^-5 К-1; α2=1,10*10-5 К-1; α3=1,5*10-5 К-1.

50.65. Вычислить максимальную силу Fmах, возвращающую атом твердого тела в положение равновесия, если коэффициент гармоничности β=50 Н/м, а коэффициент ангармоничности γ=500 ГПа.

50.66. Определить силу F (соответствующую максимальному смещению), возвращающую атом в положение равновесия, если амплитуда тепловых колебаний составляет 5 % от среднего межатомного расстояния при данной температуре. При расчетах принять: коэффициент гармоничности β=50 Н/м, коэффициент ангармоничности γ=500 ГПа, среднее межатомное расстояние r0=0,4 нм.

50.67. Каково максимальное изменение ΔПmax потенциальной энергии атомов в кристаллической решетке твердого тела при гармонических колебаниях, если амплитуда тепловых колебаний составляет 5 % от среднего межатомного расстояния? Среднее расстояние r0 между атомами принять равным 0,3 нм, модуль Юнга E=100 ГПа.

50.68. Показать, что если смещение частиц в кристаллической решетке твердого тела подчиняется закону Гука F(x)=-βx, то тепловое расширение отсутствует.

50.69. Определить коэффициент гармоничности β в уравнении колебаний частиц твердого тела, если равновесное расстояние r0 между частицами равно 0,3 нм, модуль Юнга E=200 ГПа.

online-tusa.com