На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

Число записей в разделе: 13282

Чтобы измерить на местности расстояние между двумя точками А и В, между которыми нельзя пройти по прямой, выбирают такую точку С, из которой можно пройти и к точке А, и к точке В и из которой видны обе эти точки. Измеряют расстояния АС и ВС, продолжают их за точку С и отмеряют CD=AC и ЕС=СВ. Тогда отрезок ED равен искомому расстоянию. Объясните почему

Отрезки АВ и CD пересекаются в точке О. Докажите равенство треугольников АСО и DBO, если известно, что угол АСО равен углу DBO и ВО=СО

Отрезки АС и BD пересекаются в точке О. Докажите равенство треугольников ВАО и DCO, если известно, что угол ВАО равен углу DCO и АО=СО

Докажите равенство треугольников по медиане и углам, на которые медиана разбивает угол треугольника

Чтобы измерить на местности расстояние между двумя точками А и В, из которых одна (точка А) недоступна, провешивают направление отрезка АВ и на его продолжении отмеряют произвольный отрезок ВЕ. Выбирают на местности точку D, из которой видна точка А и можно пройти к точкам В и Е. Провешивают прямые BDQ и EDF и отмеряют FD=DE и DQ=BD. Затем идут по прямой FQ, глядя на точку А, пока не найдут точку Н, которая лежит на прямой AD. Тогда HQ равно искомому расстоянию. Докажите это

Периметр равнобедренного треугольника равен 1 м, а основание равно 0,4 м. Найдите длину боковой стороны

Периметр равнобедренного треугольника равен 7,5 м, а боковая сторона равна 2 м. Найдите основание

Периметр равнобедренного треугольника равен 15,6 м. Найдите его стороны, если основание: 1) меньше боковой стороны на 3 м; 2) больше боковой стороны на 3 м

Докажите, что у равностороннего треугольника все углы равны

От вершины С равнобедренного треугольника ABC с основанием AB отложены равные отрезки: CA1 на стороне CA и CB1 на стороне СВ. Докажите равенство треугольников 1) САВ1 и СВА1; 2) ABB1 и BAA1

На основании АВ равнобедренного треугольника АВС даны точки А1 и В1. Известно, что АВ1=ВА1. Докажите, что треугольники АВ1С и ВА1С равны

Треугольники АСС1 и ВСС1 равны. Их вершины А и В лежат по разные стороны от прямой СС1. Докажите, что треугольники АВС и АВС1 равнобедренные

Сформулируйте и докажите теорему, обратную утверждению задачи № 12

На сторонах AC и BC треугольника ABC взяты точки С1 и С2. Докажите, что треугольник ABC равнобедренный, если треугольники ABC1 и ВАС2 равны

1) Докажите, что середины сторон равнобедренного треугольника являются также вершинами равнобедренного треугольника. 2) Докажите, что середины сторон равностороннего треугольника являются также вершинами равностороннего треугольника

Докажите, что у равнобедренного треугольника: 1) биссектрисы, проведенные из вершин при основании, равны; 2) медианы, проведенные из тех же вершин, тоже равны

Докажите, что у равных треугольников АВС и А1В1С1: 1) медианы, проведенные из вершин А и А1, равны; 2) биссектрисы, проведенные из вершин А и А1, равны

Точки А, С, В, D лежат на одной прямой, причем отрезки АВ и CD имеют общую середину. Докажите, что если треугольник АВЕ равнобедренный с основанием АВ, то треугольник CDE тоже равнобедренный с основанием CD

Докажите равенство треугольников по углу, биссектрисе этого угла и стороне, прилежащей к этому углу

В равнобедренном треугольнике ABC с основанием АС проведена медиана ВМ. На ней взята точка D. Докажите равенство треугольников: 1) ABD и CBD; 2) AMD и CMD

Докажите, что треугольник ABC равнобедренный, если у него 1) медиана BD является высотой; 2) высота BD является биссектрисой; 3) биссектриса BD является медианой

Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведенные к основанию, лежат на одной прямой

В равнобедренном треугольнике АВС с основанием ACпроведена медиана BD. Найдите ее длину, если периметр треугольника АВС равен 50 м, а треугольника ABD-40 м

Докажите, что биссектриса равнобедренного треугольника, проведенная из вершины, противолежащей основанию, является медианой и высотой

У треугольников ABC и A1B1C1 AB=A1B1, AC=A1C1, ∠C=∠C1=90(прямоугольные). Докажите, что ΔABC=ΔA1B1C1

online-tusa.com