На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

48.8 Бегуны К, К приводятся в движение от вала двигателя при помощи передачи, схема которой показана на рисунке. Масса одного бегуна равна 3 т, средний радиус R=1 м, радиус вращения r=0,5 м. Считаем, что мгновенная ось вращения бегуна проходит через среднюю точку C обода. Отношение радиусов колес конической передачи от двигателя к вертикальному валу равно 2/3. Бегун считаем однородным диском радиуса R и пренебрегаем массой всех движущихся частей по сравнению с массой бегунов. Вычислить, какой постоянный вращающий момент должен быть приложен на валу двигателя, чтобы сообщить вертикальному валу угловую скорость 120 об/мин по истечении 10 с от момента пуска двигателя; силами сопротивления пренебречь.

48.11 Однородный конус катится по шероховатой плоскости, наклоненной под углом α к горизонту. Длина образующей конуса l, угол раствора 2β. Составить уравнение движения конуса.

48.16 Два вала, находящихся в одной плоскости и образующих между собой угол α, соединены шарниром Кардана. Моменты инерции валов равны J1 и J2. Составить уравнение движения первого вала, если на него действует вращающий момент M1, а к другому валу приложен момент сопротивления М2. Трением в подшипниках пренебречь.

48.17 Кривошипный механизм состоит из поршня массы m1 шатуна AB массы m2, кривошипа OB, вала и махового колеса; J2-момент инерции шатуна относительно его центра масс С; J3-момент инерции кривошипа OB, вала и махового колеса относительно оси; Q-площадь поршня, p-давление, действующее на поршень, l-длина шатуна; S-расстояние между точкой А и центром масс шатуна; r-длина кривошипа OB; М-момент сопротивления, действующий на вал. Составить уравнение движения механизма, считая угол поворота шатуна φ малым, т. е. полагая sin φ=φ и cosφ=1; в качестве обобщенной координаты взять угол поворота кривошипа ф. Механизм расположен в горизонтальной плоскости.

48.18 По однородному стержню массы М и длины 2а, концы которого скользят по гладкой, расположенной в горизонтальной плоскости окружности радиуса R, движется с постоянной относительной скоростью и материальная точка массы т. Определить движение стержня. В начальный момент материальная точка находится в центре масс стержня.

48.20 К окружности диска радиуса R шарнирно присоединен рычаг, несущий на своих концах сосредоточенные массы m1 и m2. Расстояния масс от шарнира соответственно равны l1 и l2. Диск вращается около вертикальной оси, перпендикулярной его плоскости, с угловой скоростью ω. Составить уравнение движения рычага и определить его относительное положение равновесия. Массой рычага пренебречь. Ось вращения рычага параллельна оси вращения диска. Решить также задачу в предположении, что диск вращается в вертикальной плоскости (учесть действие силы тяжести).

48.21 Тонкий диск массы М может своей плоскостью скользить без трения по горизонтальной плоскости. По диску, верхняя поверхность которого шероховата, движется материальная точка массы т: Уравнения относительного движения точки в декартовых координатах x и y, связанных с диском и имеющих начало в его центре масс, заданы в виде x=x(t), y=y(t). Момент инерции диска относительно его центра масс равен J. Определить закон изменения угловой скорости диска. В начальном положении диск неподвижен.

48.22 По диску, описанному в предыдущей задаче, вдоль окружности радиуса R движется материальная точка с относительной скоростью v=at. Найти закон движения диска.

48.25 Тело массы m может вращаться вокруг горизонтальной оси O1O2, которая в свою очередь вращается с постоянной угловой скоростью ω вокруг вертикальной оси OC. Центр масс тела G лежит на расстоянии l от точки O3 на прямой, перпендикулярной O1O2. Предполагая, что оси O1O2 и O3G являются главными осями инерции тела в точке O3, составить уравнение движения. Моменты инерции тела относительно главных осей равны A, B, C.

48.32 Решить предыдущую задачу, заменив грузы M1 и М2 катками массы m и радиуса r каждый. Катки считать сплошными однородными круглыми дисками. Коэффициент трения качения катков о наклонные плоскости равен fк, Нити закреплены на осях катков.

48.37 По неподвижной призме A, расположенной под углом α к горизонту, скользит призма В массы m2. К призме B, посредством цилиндрического шарнира O и спиральной пружины с коэффициентом жесткости c, присоединен тонкий однородный стержень OD массы m1 и длины l. Стержень совершает колебания вокруг оси O, перпендикулярной плоскости рисунка. Положения призмы В и стержня OD определены посредством координат s и р. Написать дифференциальные уравнения движения материальной

48.45 Пользуясь результатами, полученными при решении предыдущей задачи, составить дифференциальное уравнение малых колебании цилиндра, если движение началось из состояния покоя и при t=0, ρ=ρ0, φ=φ0

48.46 Определить движение системы, состоящей из двух масс m1 и m2, насаженных на гладкий горизонтальный стержень (ось Ох), массы связаны пружиной жесткости с и могут двигаться поступательно вдоль стержня; расстояние между центрами масс при ненапряженной пружине равно l; начальное состояние системы при t=0 определяется следующими значениями скоростей и координат центров масс: x1=0, x1'=u0, x2=l, x2'=0

48.47 Система, состоящая из двух одинаковых колес радиуса а каждое, могущих независимо вращаться вокруг общей нормальной к ним оси O1O2 длины l, катится по горизонтальном плоскости. Колеса связаны пружиной жесткости c, работающей на кручение (упругий торсион). Масса каждого колеса М; С-момент инерции колеса относительно оси вращения, А-момент инерции колеса относительно диаметра. Составить уравнения движения системы и определить движение, отвечающее начальным условиям φ1=0, φ1'=0, φ2=0, φ2'=ω (φ1, φ2-углы поворота колес). Массой оси пренебречь.

49.1 Трубка AB вращается с постоянной угловой скоростью ω вокруг вертикальной оси CD, составляя с ней угол α. В трубке находится пружина жесткости c, один конец которой укреплен в точке A; ко второму концу пружины прикреплено тело M массы m, скользящее без трения внутри трубки. В недеформированном состоянии длина пружины равна AO=l. Приняв за обобщенную координату расстояние x от тела M до точки O, определить кинетическую энергию T тела M и обобщенный интеграл энергии.

49.2 Найти первые интегралы движения сферического маятника длины l, положение которого определяется углами θ и ψ.

49.3 Гироскопический тахометр установлен на платформе, вращающейся с постоянной угловой скоростью u вокруг оси ζ. Определить первые интегралы движения, если коэффициент жесткости спиральной пружины равен c, моменты инерции гироскопа относительно главных центральных осей x, y, z соответственно равны A, B и C, причем B=A; силы трения на оси z собственного вращения гироскопа уравновешиваются моментом, создаваемым статором электромотора, приводящим во вращение гироскоп; силами трения на оси прецессии y пренебречь.

49.4 Материальная точка M соединена с помощью стержня OM длины l с плоским шарниром O, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью ω. Определить условие устойчивости нижнего вертикального положения маятника, период его малых колебаний при выведении его из этого положения и обобщенный интеграл энергии. Массой стержня пренебречь.

49.5 Уравновешенный гироскоп в кардановом подвесе движется по инерции. Определить кинетическую энергию системы и первые интегралы уравнений движения, если момент инерции внешней рамки относительно неподвижной оси вращения ξ равен Jξ, моменты инерции внутренней рамки относительно главных центральных осей x, y, z равны J'x, J'y, J'z, а соответствующие моменты инерции гироскопа-Jx, Jy и Jz (Jx=Jy).

49.6 Гироскоп установлен в кардановом подвесе. Вокруг осей ξ и у вращения рамок подвеса действуют моменты внешних сил Mξ и Му. Игнорируя циклическую координату φ, найти 1) дифференциальные уравнения движения для координат φ и θ, 2) гироскопические члены. (См. рисунок к задаче 49.5.)

49.7 Составить функцию Гамильтона и канонические уравнения движения для математического маятника массы m и длины l, положение которого определяется углом φ отклонения его от вертикали. Проверить, что полученные уравнения эквивалентны обычному дифференциальному уравнению движения математического маятника.

49.8 Материальная точка массы m подвешена с помощью стержня длины l к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью ω (см. рисунок к задаче 49.4). Составить функцию Гамильтона и канонические уравнения движения. Массу стержня не учитывать.

49.9 Вертикальное положение оси симметрии волчка, вращающегося относительно неподвижной точки O под действием силы тяжести, определяется углами α и β. Исключив циклическую координату φ(угол собственного вращения), составить для углов α и β функции Рауса и Гамильтона. Масса волчка равна m, расстояние от его центра масс до точки O равно l, момент инерции относительно оси симметрии z равен C, а относительно осей x и у равен A.

49.10 Пользуясь результатами, полученными при решении предыдущей задачи, составить для канонических переменных Гамильтона дифференциальные уравнения малых колебаний волчка около верхнего вертикального положения.

49.11 Положение оси симметрии z волчка, движущегося относительно неподвижной точки O под действием силы тяжести, определяется углами Эйлера, углом прецессии ψ и углом нутации θ. Составить функцию Гамильтона для углов ψ, θ и φ (угол собственного вращения) и соответствующих импульсов, если m-масса волчка, l-расстояние от его центра масс до точки O, C-момент инерции относительно оси z, A-момент инерции относительно любой оси, лежащей в экваториальной плоскости, проходящей через точку O.

online-tusa.com | SHOP