На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

2.153 Найти изменение ускорения свободного падения при опускании тела на глубину h. На какой глубине ускорение свободного падения gh составляет 0,25 ускорения свободного падения g у поверхности Земли? Плотность Земли считать постоянной. Указание: учесть, что тело, находящееся на глубине h над поверхностью Земли, не испытывает со стороны вышележащего слоя толщиной h никакого притяжения, так как притяжения отдельных частей слоя взаимно компенсируются.

2.154 Каково соотношение между высотой Н горы и глубиной h шахты, если период колебания маятника на вершине горы и на дне шахты один и тот же. Указание: формула для периода колебания математического маятника приведена в § 12

2.155 Найти период обращения T вокруг Солнца искусственной планеты, если известно, что большая полуось R1 ее эллиптической орбиты превышает большую полуось R2 земной орбиты на ΔR=0,24·10^8 км.

2.156. Орбита искусственной планеты близка к круговой. Найти линейную скорость v ее движения и период T ее обращения вокруг Солнца, считая известным диаметр Солнца D и его среднюю плотность ρ. Среднее расстояние планеты от Солнца r=1,71*10^8

2.157 Большая полуось R1 эллиптической орбиты первого в мире спутника Земли меньше большой полуоси R2 орбиты второго спутника на ΔR=800 км. Период обращения вокруг Земли первого спутника в начале его движения был T1=96,2 мин. Найти большую полуось R2 орбиты второго искусственного спутника Земли и период T2 его обращения вокруг Земли.

2.158 Минимальное удаление от поверхности Земли космического корабля-спутника Восток-2 составляло hmin=183 км, а максимальное удаление-hmax=244 км. Найти период обращения T спутника вокруг Земли.

2.159 Имеется кольцо радиусом R. Радиус проволоки равен r, плотность материала равна ρ. Найти силу F, с которой это кольцо притягивает материальную точку массой m, находящуюся на оси кольца на расстоянии L от его центра.

2.160 Имеется кольцо радиусом R=20 см из медной проволоки. Найти силу F, с которой это кольцо притягивает материальную точку массой m=2 г, находящуюся на оси кольца на расстоянии L=0, 5, 10, 15, 20 и 50 см от его центра. Составить таблицу значений F и представить графически зависимость F=f(L). На каком расстоянии Lmax от центра кольца сила имеет максимальное значение Fmax и каково это значение? Радиус проволоки r=1 мм.

2.161 Сила взаимодействия между кольцом и материальной точкой, находящейся на оси кольца, имеет максимальное значение Fmax, когда точка находится на расстоянии Lmax от центра кольца. Во сколько раз сила взаимодействия F между кольцом и материальной точкой, находящейся на расстоянии L=0,5Lmax от центра кольца, меньше максимальной силы Fmax?

3.1 Найти момент инерции J и момент импульса L земного шара относительно оси вращения.

3.2 Два шара одинакового радиуса R=5 см закреплены на концах невесомого стержня. Расстояние между шарами r=0,5 м. Масса каждого шара m=1 кг. Найти: а) момент инерции J1 системы относительно оси, проходящей через середину стержня перпендикулярно к нему; б) момент инерции J2 системы относительно той же оси, считая шары материальными точками, массы которых сосредоточены в их центрах; в) относительную ошибку δ=(J1-J2)/J2, которую мы допускаем при вычислении момента инерции системы, заменяя величину J1 величиной J2.

3.3 К ободу однородного диска радиусом R=0,2 м приложена касательная сила F=98,1 Н. При вращении на диск действует момент сил трения Мтр=98,1 Н*м. Найти массу m дисков, если известно, что диск вращается с угловым ускорением e=100 рад/с^2.

3.4 Однородный стержень длиной l=1 м и массой m=0,5 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением e вращается стержень, если на него действует момент сил M=98,1 мН*м?

3.5 Однородный диск радиусом R=0,2 м и массой m=0,5 кг вращается вокруг оси, проходящей через его центр перпендикулярно к его плоскости. Зависимость угловой скорости ω вращения диска от времени t дается уравнением ω=А + Bt, где В=8 рад/с^2. Найти касательную силу F, приложенную к ободу диска. Трением пренебречь.

3.6 Маховик, момент инерции которого J=63,6 кг*м^2 вращается с угловой скоростью ω=31,4 рад/с. Найти момент сил торможения М, под действием которого маховик останавливается через время t=20 c. Маховик считать однородным диском.

3.7 К ободу колеса радиусом 0,5 м и массой m=50 кг приложена касательная сила F=98,1 H. Найти угловое ускорение e колеса. Через какое время t после начала действия силы колесо будет иметь частоту вращения n=100 об/с? Колесо считать однородным диском. Трением пренебречь.

3.8 Маховик радиусом R=0,2 м и массой m=10 кг соединен с мотором при помощи приводного ремня. Сила натяжения ремня, идущего без скольжения, T=14,7 Н. Какую частоту вращения n будет иметь маховик через время t=10 с после начала движения? Маховик считать однородным диском. Трением пренебречь.

3.9 Маховое колесо, момент инерции которого J=245 кг*м^2, вращается с частотой n=20 об/с. Через время t=1 мин после того, как на колесо перестал действовать момент сил M, оно остановилось. Найти момент сил трения Mтр и число оборотов N, которое сделало колесо до полной остановки после прекращения действия сил. Колесо считать однородным диском.

3.10 Две гири с массами m1=2 кг и m2=1 кг соединены нитью, перекинутой через блок массой m=1 кг. Найти ускорение a, с которым движутся гири, и силы натяжения Т1 и Т2 нитей, к которым подвешены гири. Блок считать однородным диском. Трением пренебречь.

3.11 На барабан массой m0=9 кг намотан шнур, к концу которого привязан груз массой m=2 кг. Найти ускорение а груза. Барабан считать однородным цилиндром. Трением пренебречь.

3.12 На барабан радиусом R=0,5 м намотан шнур, к концу которого привязан груз массой m=10 кг. Найти момент инерции J барабана, если известно, что груз опускается с ускорением a=2,04 м/с^2.

3.13 На барабан радиусом R=20 см, момент инерции которого J=0,1 кг*м^2, намотан шнур, к концу которого привязан груз массой m=0,5 кг. До начала вращения барабана высота груза над полом h0=1 м. Через какое время t груз опустится до пола? Найти кинетическую энергию Wk груза в момент удара о пол и силу натяжения нити T. Трением пренебречь.

3.14 Две гири с разными массами соединены нитью, перекинутой через блок, момент инерции которого J=50 кг*м^2 и радиус R=20 см. Момент сил трения вращающегося блока Mтр=98,1 Н*м. Найти разность сил натяжения нити T1-T2 по обе стороны блока, если известно, что блок вращается с угловым ускорением e=2,36 рад/с2. Блок считать однородным диском.

3.15 Блок массой m=1 кг укреплен на конце стола (см. рис. и задачу 2.31). Гири 1 и 2 одинаковой массы m1=m2=1 кг соединены нитью, перекинутой через блок. Коэффициент трения гири 2 о стол k=0,1. Найти ускорение a, с которым движутся гири, и силы натяжения Т1 и Т2 нитей. Блок считать однородным диском. Трением в блоке пренебречь.

3.16 Диск массой m=2 кг катится без скольжения по горизонтальный плоскости со скоростью v=4 м/с. Найти кинетическую энергию Wк диска.

online-tusa.com