На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

15.1 Точечный заряд Q=10 нКл, находясь в некоторой точке поля, обладает потенциальной энергией П=10 мкДж. Найти потенциал φ этой точки поля.

15.2 При перемещении заряда Q=20 нКл между двумя точками поля внешними силами была совершена работа A=4 мкДж. Определить работу A1 сил поля и разность Δφ потенциалов этих точек поля.

15.3 Электрическое поле создано точечным положительным зарядом Q1=6 нКл. Положительный заряд Q2 переносится из точки А этого поля в точку B (рис. 15.5). Каково изменение потенциальной энергии ΔП, приходящееся на единицу переносимого заряда, если r1=20 см и r2=50 см?

15.4 Электрическое поле создано точечным зарядом Q1=50 нКл. Не пользуясь понятием потенциала, вычислить работу А внешних сил по перемещению точечного заряда Q2=-2 нКл из точки С в точку B (рис. 15.6), если r1=10 см, r2=20 см. Определить также изменение ΔП потенциальной энергии системы зарядов.

15.5 Поле создано точечным зарядом Q=1 нКл. Определить потенциал φ поля в точке, удаленной от заряда на расстояние r=20 см.

15.6. Определить потенциал φ электрического поля в точке, удаленной от зарядов Q1=-0,2 мкКл и Q2=0,5 мкКл соответственно на r1=15 см и r2=25 см. Определить также минимальное и максимальное расстояния между зарядами, при которых возможно решение.

15.7 Заряды Q1=1 мкКл и Q2=-1 мкКл находятся на расстоянии d=10 см. Определить напряженность E и потенциал φ поля в точке, удаленной на расстояние r=10 см от первого заряда и лежащей на линии, проходящей через первый заряд перпендикулярно направлению от Q1 к Q2.

15.8 Вычислить потенциальную энергию П системы двух точечных зарядов Q1=100 нКл и Q2=10 нКл, находящихся на расстоянии d=10 см друг от друга.

15.9 Найти потенциальную энергию П системы трех точечных зарядов Q1=10 нКл, Q2=20 нКл и Q3=-30 нКл, расположенных в вершинах равностороннего треугольника со стороной длиной a=10 см.

15.10 Какова потенциальная энергия П системы четырех одинаковых точечных зарядов Q=10 нКл, расположенных в вершинах квадрата со стороной длиной a=10 см?

15.11 Определить потенциальную энергию П системы четырех точечных зарядов, расположенных в вершинах квадрата со стороной длиной a=10 см. Заряды одинаковы по модулю Q=10 нКл, но два из них отрицательны. Рассмотреть два возможных случая расположения зарядов.

15.12 Поле создано двумя точечными зарядами +2Q и-Q, находящимися на расстоянии d=12 см друг от друга. Определить геометрическое место точек на плоскости, для которых потенциал равен нулю (написать уравнение линии нулевого потенциала).

15.13 Система состоит из трех зарядов-двух одинаковых по величине Q1=|Q2|=1 мкКл и противоположных по знаку и заряда Q=20 нКл, расположенного в точке 1 посередине между двумя другими зарядами системы (рис. 15.7). Определить изменение потенциальной энергии ΔП системы при переносе заряда Q из точки 1 в точку 2. Эти точки удалены от отрицательного заряда Q2 на расстояние a=0,2 м.

15.14 По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью τ=10 нКл/м. Определить потенциал φ в точке, лежащей на оси кольца, на расстоянии a=5 см от центра.

15.15 На отрезке тонкого прямого проводника равномерно распределен заряд с линейной плотностью τ=10 нКл/м. Вычислить потенциал φ, создаваемый этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное длине этого отрезка.

15.16 Тонкий стержень длиной ℓ=10 см несет равномерно распределенный заряд Q=1 нКл. Определить потенциал φ электрического поля в точке, лежащей на оси стержня на расстоянии a=20 см от ближайшего его конца.

15.17 Тонкие стержни образуют квадрат со стороной длиной a. Стержни заряжены с линейной плотностью τ=1,33 нКл/м. Найти потенциал φ в центре квадрата.

15.18 Бесконечно длинная тонкая прямая нить несет равномерно распределенный по длине нити заряд с линейной плотностью τ=0,01 мкКл/м. Определить разность потенциалов Δφ двух точек поля, удаленных от нити на r1=2 см и r2=4 см.

15.19. Тонкая круглая пластина несет равномерно распределенный по плоскости заряд Q=1 нКл. Радиус R пластины равен 5 см. Определить потенциал φ электрического поля в двух точках: 1) в центре пластины; 2) в точке, лежащей на оси, перпендикулярной плоскости пластины и отстоящей от центра пластины на a=5 см.

15.20. Имеются две концентрические металлические сферы радиусами R1=3 см и R2=6 см. Пространство между сферами заполнено парафином. Заряд Q1 внутренней сферы равен-1 нКл, внешний Q2=2 нКл. Найти потенциал φ электрического поля на расстоянии: 1) r1=1 см; 2)r2=5 см; 3) r3=9 см от центра сфер.

15.21. Металлический шар радиусом R=5 см несет заряд Q=1 нКл. Шар окружен слоем эбонита толщиной d=2 см. Вычислить потенциал ф электрического поля на расстоянии: 1) r1=3 см; 2) r2=6 см; 3) r3=9 см от центра шара. Построить график зависимости φ(r).

15.22. Металлический шар радиусом R1=10 см заряжен до потенциала φ1=300 B. Определить потенциал φ2 этого шара в двух случаях: 1) после того, как его окружат сферической проводящей оболочкой радиусом R2=15 см и на короткое время соединят с ней проводником; 2) если его окружить сферической проводящей заземленной оболочкой радиусом R2=15 см?

15.23. Заряд распределен равномерно по бесконечной плоскости с поверхностной плотностью σ=10 нКл/м^2. Определить разность потенциалов Δφ двух точек поля, одна из которых находится на плоскости, а другая удалена от плоскости на расстояние d=10 см.

15.24. Определить потенциал φ, до которого можно зарядить уединенный металлический шар радиусом R=10 см, если напряженность E поля, при которой происходит пробой воздуха, равна 3 МВ/м. Найти также максимальную поверхностную плотность а электрических зарядов перед пробоем.

15.25 Две бесконечные параллельные плоскости находятся на расстоянии d=0,5 см друг от друга. На плоскостях равномерно распределены заряды с поверхностными плотностями σ1=0,2 мкКл/м^2 и σ2=-0,3 мкКл/м2. Определить разность потенциалов U между плоскостями.

online-tusa.com