На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
3.42 Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой n=240 мин^-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения T2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.
3.43 Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз P. Найти мощность N мотора, если мотор вращается с частотой n=24 с^-1, масса m груза равна 1 кг и показание динамометра F=24 Н.
3.44 Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу A1 нужно совершить, чтобы сообщить маховику частоту n=10 с^-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус?
3.45 Кинетическая энергия T вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент M силы торможения.
3.46 Маховик, момент инерции J которого равен 40 кг*м^2, начал вращаться равноускоренно из состояния покоя под действием момента силы M=20 Н*м. Вращение продолжалось в течение t=10 c. Определить кинетическую энергию T, приобретенную маховиком.
3.47 Пуля массой m=10 г летит со скоростью v=800 м/с, вращаясь около продольной оси с частотой n=3000 с^-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию T пули.
3.48 Сплошной цилиндр массой m=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость v оси цилиндра равна 1 м/с. Определить полную кинетическую энергию T цилиндра.
3.49 Обруч и сплошной цилиндр, имеющие одинаковую массу m=2 кг, катятся без скольжения с одинаковой скоростью v=5 м/с. Найти кинетические энергии T1 и T2 этих тел.
3.50 Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия T шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара.
3.51 Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=1 м.
3.52 Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см?
3.53 Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол φ=60° от положения равновесия и отпустили. Определить линейную скорость v нижнего конца стержня в момент прохождения через положение равновесия.
3.54 Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку O на стержне. Стержень отклонили от положения равновесия на угол α и отпустили (см. рис. 3.13). Определить угловую скорость ω стержня и линейную скорость v точки B на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) a=0, b=l/2, α=π/3; 2) a=l/3, b=2l/3, α=π/2; 3) a=l/4, b=l, α=2π/3.
3.55 Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую ω и линейную v скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
3.56 Однородный диск радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку O (см. рис. 3.14). Определить угловую ω и линейную v скорости точки В на диске в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) a=b=R, α=π/2; 2) a=R/2, b=0, α=π/3; 3) a=2R/3, b=2R/3, α=5π/6; 4) a=R/3, b=R, α=2π/3.
2 пример 1. К концам однородного стержня приложены две противоположно направленные силы: F1=40 Н и F2=100 Н (рис. 2.1, а). Определить силу натяжения T стержня в поперечном сечении, которое делит стержень на две части в отношении 1:2.
2 пример 2. В лифте на пружинных весах находится тело массой m=10 кг (рис. 2.2, а). Лифт движется с ускорением a=2 м/с^2. Определить показания весов в двух случаях, когда ускорение лифта направлено: 1) вертикально вверх, 2) вертикально вниз.
2 пример 3. При падении тела с большой высоты его скорость vуст при установившемся движении достигает 80 м/с. Определить время τ, в течение которого начиная от момента начала падения скорость становится равной 1/2 vуст. Силу сопротивления воздуха принять пропорциональной скорости тела.
2 пример 4. Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом α=30° к нормали. Определить импульс p, получаемый стенкой.
2 пример 5. На спокойной воде пруда стоит лодка длиной L и массой M перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой m. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.
2 пример 6. Два шара массами m1=2,5 кг и m2=1,5 кг движутся навстречу друг другу со скоростями v1=6 м/с и v2=2 м/с. Определить: 1) скорость u шаров после удара; 2) кинетические энергии шаров T1 до и T2 после удара; 3) долю кинетической энергии w шаров, превратившейся во внутреннюю энергию. Удар считать прямым, неупругим.
2 пример 7. Шар массой m1, движущийся горизонтально с некоторой скоростью v1, столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой. Какую долю w своей кинетической энергии первый шар передал второму?
2 пример 8. Молот массой m1=200 кг падает на поковку, масса m2 которой вместе с наковальней равна 2500 кг. Скорость v1 молота в момент удара равна 2 м/с. Найти: 1) кинетическую энергию T1 молота в момент удара; 2) энергию T2, переданную фундаменту; 3) энергию T, затраченную на деформацию поковки; 4) коэффициент полезного действия η (КПД) удара молота о поковку. Удар молота о поковку рассматривать как неупругий. Примечание к примерам 8 и 9. Оба примера решались одинаково с единственной разницей, что при ударе бойка молота о поковку полезной считалась энергия T, затраченная на деформацию поковки, а при ударе бойка свайного молота о сваю-энергия T2, затраченная на углубление сваи в грунт.
2 пример 9. Боек (ударная часть) свайного молота массой m1=500 кг падает на сваю массой m2=100 кг со скоростью v1=4 м/с. Определить: 1) кинетическую энергию T1 бойка в момент удара; 2) энергию T2, затраченную на углубление сваи в грунт; 3) кинетическую энергию T, перешедшую во внутреннюю энергию системы; 4) КПД η удара бойка о сваю. Удар бойка о сваю рассматривать как неупругий. Примечание к примерам 8 и 9. Оба примера решались одинаково с единственной разницей, что при ударе бойка молота о поковку полезной считалась энергия T, затраченная на деформацию поковки, а при ударе бойка свайного молота о сваю-энергия T2, затраченная на углубление сваи в грунт.
2.1 На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 Н, направленная параллельно поверхности стола. Найти ускорение a бруска.
online-tusa.com
|
SHOP