На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

3.42 Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой n=240 мин^-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения T2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.

3.43 Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз P. Найти мощность N мотора, если мотор вращается с частотой n=24 с^-1, масса m груза равна 1 кг и показание динамометра F=24 Н.

3.44 Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу A1 нужно совершить, чтобы сообщить маховику частоту n=10 с^-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус?

3.45 Кинетическая энергия T вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент M силы торможения.

3.46 Маховик, момент инерции J которого равен 40 кг*м^2, начал вращаться равноускоренно из состояния покоя под действием момента силы M=20 Н*м. Вращение продолжалось в течение t=10 c. Определить кинетическую энергию T, приобретенную маховиком.

3.47 Пуля массой m=10 г летит со скоростью v=800 м/с, вращаясь около продольной оси с частотой n=3000 с^-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию T пули.

3.48 Сплошной цилиндр массой m=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость v оси цилиндра равна 1 м/с. Определить полную кинетическую энергию T цилиндра.

3.49 Обруч и сплошной цилиндр, имеющие одинаковую массу m=2 кг, катятся без скольжения с одинаковой скоростью v=5 м/с. Найти кинетические энергии T1 и T2 этих тел.

3.50 Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия T шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара.

3.51 Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=1 м.

3.52 Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см?

3.53 Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол φ=60° от положения равновесия и отпустили. Определить линейную скорость v нижнего конца стержня в момент прохождения через положение равновесия.

3.54 Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку O на стержне. Стержень отклонили от положения равновесия на угол α и отпустили (см. рис. 3.13). Определить угловую скорость ω стержня и линейную скорость v точки B на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) a=0, b=l/2, α=π/3; 2) a=l/3, b=2l/3, α=π/2; 3) a=l/4, b=l, α=2π/3.

3.55 Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую ω и линейную v скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.

3.56 Однородный диск радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку O (см. рис. 3.14). Определить угловую ω и линейную v скорости точки В на диске в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) a=b=R, α=π/2; 2) a=R/2, b=0, α=π/3; 3) a=2R/3, b=2R/3, α=5π/6; 4) a=R/3, b=R, α=2π/3.

2 пример 1. К концам однородного стержня приложены две противоположно направленные силы: F1=40 Н и F2=100 Н (рис. 2.1, а). Определить силу натяжения T стержня в поперечном сечении, которое делит стержень на две части в отношении 1:2.

2 пример 2. В лифте на пружинных весах находится тело массой m=10 кг (рис. 2.2, а). Лифт движется с ускорением a=2 м/с^2. Определить показания весов в двух случаях, когда ускорение лифта направлено: 1) вертикально вверх, 2) вертикально вниз.

2 пример 3. При падении тела с большой высоты его скорость vуст при установившемся движении достигает 80 м/с. Определить время τ, в течение которого начиная от момента начала падения скорость становится равной 1/2 vуст. Силу сопротивления воздуха принять пропорциональной скорости тела.

2 пример 4. Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом α=30° к нормали. Определить импульс p, получаемый стенкой.

2 пример 5. На спокойной воде пруда стоит лодка длиной L и массой M перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой m. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.

2 пример 6. Два шара массами m1=2,5 кг и m2=1,5 кг движутся навстречу друг другу со скоростями v1=6 м/с и v2=2 м/с. Определить: 1) скорость u шаров после удара; 2) кинетические энергии шаров T1 до и T2 после удара; 3) долю кинетической энергии w шаров, превратившейся во внутреннюю энергию. Удар считать прямым, неупругим.

2 пример 7. Шар массой m1, движущийся горизонтально с некоторой скоростью v1, столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой. Какую долю w своей кинетической энергии первый шар передал второму?

2 пример 8. Молот массой m1=200 кг падает на поковку, масса m2 которой вместе с наковальней равна 2500 кг. Скорость v1 молота в момент удара равна 2 м/с. Найти: 1) кинетическую энергию T1 молота в момент удара; 2) энергию T2, переданную фундаменту; 3) энергию T, затраченную на деформацию поковки; 4) коэффициент полезного действия η (КПД) удара молота о поковку. Удар молота о поковку рассматривать как неупругий. Примечание к примерам 8 и 9. Оба примера решались одинаково с единственной разницей, что при ударе бойка молота о поковку полезной считалась энергия T, затраченная на деформацию поковки, а при ударе бойка свайного молота о сваю-энергия T2, затраченная на углубление сваи в грунт.

2 пример 9. Боек (ударная часть) свайного молота массой m1=500 кг падает на сваю массой m2=100 кг со скоростью v1=4 м/с. Определить: 1) кинетическую энергию T1 бойка в момент удара; 2) энергию T2, затраченную на углубление сваи в грунт; 3) кинетическую энергию T, перешедшую во внутреннюю энергию системы; 4) КПД η удара бойка о сваю. Удар бойка о сваю рассматривать как неупругий. Примечание к примерам 8 и 9. Оба примера решались одинаково с единственной разницей, что при ударе бойка молота о поковку полезной считалась энергия T, затраченная на деформацию поковки, а при ударе бойка свайного молота о сваю-энергия T2, затраченная на углубление сваи в грунт.

2.1 На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 Н, направленная параллельно поверхности стола. Найти ускорение a бруска.

online-tusa.com