На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
38.45 Решить предыдущую задачу в предположении, что коэффициенты трения скольжения и качения соответственно равны f и fk. Радиус катка B равен r.
38.46 Груз массы М подвешен на нерастяжимом однородном тросе длины l, навитом на цилиндрический барабан с горизонтальной осью вращения. Момент инерции барабана относительно оси вращения J, радиус барабана R, масса единицы длины каната m. Определить скорость груза в момент, когда длина свисающей части каната равна x, если в начальный момент скорость груза v0=0, а длина свисающей части каната была равна x0; трением на оси барабана, толщиной троса и изменением потенциальной энергии троса, навитого на барабан, пренебречь.
38.47 Груз A массы M1 подвешен к однородному нерастяжимому канату длины L и массы M2. Канат переброшен через блок B, вращающийся вокруг оси O, перпендикулярной плоскости рисунка. Второй конец каната прикреплен к оси катка C, катящегося без скольжения по неподвижной плоскости. Блок B и каток C-однородные круглые диски радиуса r и массы M3 каждый. Коэффициент трения качения катка C о горизонтальную плоскость равен fк. В начальный момент, когда система находилась в покое, с блока B свисала часть каната длины l. Определить скорость груза A в зависимости от его вертикального перемещения h.
38.48 Механизм эллипсографа, расположенный в горизонтальной плоскости, приводится в движение посредством постоянного вращающего момента m0, приложенного к кривошипу OC. В начальный момент при φ=0 механизм находился в покое. Найти угловую скорость кривошипа OC в момент, когда он сделал четверть оборота. Дано: M-масса стержня AB, mA=mB=m-массы ползунов A и B, OC=AC=BC=l; массой кривошипа OC и силами сопротивления пренебречь.
38.49 Решить предыдущую задачу с учетом постоянного момента сопротивления mC в шарнире C.
38.50 К кривошипу OO1 эпициклического механизма, расположенного в горизонтальной плоскости, приложен вращающий момент Mвр=M0-αω, где M0 и α-положительные постоянные, а ω-угловая скорость кривошипа. Масса кривошипа равна m, M-масса сателлита (подвижного колеса). Считая кривошип тонким однородным стержнем, а сателлит-однородным круглым диском радиуса r, определить угловую скорость ω кривошипа как функцию времени. В начальный момент система находилась в покое. Радиус неподвижной шестерни равен R; силами сопротивления пренебречь.
38.51 Решить предыдущую задачу с учетом постоянного момента трения Mтр на оси O1 сателлита.
38.52 Кривошип OO1 гипоциклического механизма, расположенного в горизонтальной плоскости, вращается с постоянной угловой скоростью ω0. В некоторый момент времени двигатель был отключен и под действием постоянного момента Mтр сил трения на оси сателлита (подвижного колеса) механизм остановился. Определить время τ торможения и угол φ поворота кривошипа за это время, если его масса равна M1, M2-масса сателлита, R и r-радиусы большого и малого колес. Кривошип принять за однородный тонкий стержень, а сателлит-за однородный диск.
38.53 Крестовина C приводится во вращение вокруг неподвижной оси O1 посредством однородного стержня AB, вращающегося вокруг неподвижной оси O (оси O и O1 перпендикулярны плоскости рисунка). При этом ползуны A и B, соединенные при помощи шарниров со стержнем AB, скользят вдоль взаимно перпендикулярных прорезей крестовины C. Вращение стержня происходит под действием постоянного вращающего момента mвр. Определить угловую скорость стержня AB в момент, когда он сделает четверть оборота, если в начальный момент при φ=0 он имел угловую скорость ω0. Величина момента сопротивления, возникающего в каждом из шарниров ползунов A и B, в два раза меньше mвр. Прочими силами сопротивления пренебречь. Масса стержня равна m; момент инерции крестовины C относительно оси O1 равен J; OO1=OA=OB=l.
39.1 Тяжелое тело состоит из стержня AB длины 80 см и массы 1 кг и прикрепленного к нему диска радиуса 20 см и массы 2 кг. В начальный момент при вертикальном положении стержня телу сообщено такое движение, что скорость центра масс M1 стержня равна нулю, а скорость центра масс M2 диска равна 360 см/с и направлена по горизонтали вправо. Найти последующее движение тела, принимая во внимание только действие силы тяжести.
39.2 Диск падает в вертикальной плоскости под действием силы тяжести. В начальный момент диску была сообщена угловая скорость ω0, а его центр масс C, находившийся в начале координат, имел горизонтально направленную скорость v0. Найти уравнения движения диска. Оси x, y изображены на рисунке. Силами сопротивления пренебречь.
39.3 Решить предыдущую задачу, считая, что момент mC сопротивления движению относительно подвижной горизонтальной оси, проходящей через центр масс C диска перпендикулярно плоскости движения его, пропорционален первой степени угловой скорости диска φ', причем коэффициент пропорциональности равен β. Момент инерции диска относительно этой оси равен JC.
39.4 Ведущее колесо автомашины радиуса r и массы M движется горизонтально и прямолинейно. К колесу приложен вращающий момент m. Радиус инерции колеса относительно оси, проходящей через центр масс перпендикулярно его плоскости, равен ρ. Коэффициент трения скольжения колеса о землю равен f. Какому условию должен удовлетворять вращающий момент для того, чтобы колесо катилось без скольжения? Сопротивлением качения пренебречь.
39.5 Решить предыдущую задачу с учетом трения качения, если коэффициент трения качения равен fк.
39.6 Ось ведомого колеса автомашины движется горизонтально и прямолинейно. К оси колеса приложена горизонтально направленная движущая сила F. Радиус инерции колеса относительно оси, проходящей через центр масс перпендикулярно его плоскости, равен ρ. Коэффициент трения скольжения колеса о землю равен f. Радиус колеса равен r, масса колеса равна M. Какому условию должна удовлетворять величина силы F для того, чтобы колесо катилось без скольжения? Сопротивлением качения пренебречь.
39.7 Решить предыдущую задачу с учетом трения качения, если коэффициент трения качения равен fк.
39.8 Автомобильный прицеп движется замедленно с ускорением w0 до остановки. При этом тормоз в одном из его колес не включается. Давление колеса на дорогу равно N. Коэффициент трения колеса с дорогой равен f. Дано: r-радиус колеса, m-его масса, ρ-радиус инерции. Определить силу горизонтального давления S колеса на его ось.
39.9 Колесо радиуса r катится по прямолинейному горизонтальному рельсу под действием приложенного вращающего момента mвр=(5/2)fMgr, где f-коэффициент трения скольжения, M-масса колеса. Определить скорость точки колеса, соприкасающейся с рельсом (скорость проскальзывания). Масса колеса равномерно распределена по его ободу. Трением качения пренебречь. В начальный момент колесо находилось в покое
39.10 Решить предыдущую задачу с учетом трения качения, если коэффициент трения качения fк=1/4 fr.
39.11 Однородный цилиндр с горизонтальной осью скатывается под действием силы тяжести по наклонной шероховатой плоскости с коэффициентом трения f. Определить угол наклона плоскости к горизонту и ускорение оси цилиндра, предполагая, что при движении цилиндра скольжение отсутствует. Сопротивлением качения пренебречь.
39.12 Однородный сплошной круглый диск катится без скольжения по наклонной плоскости, расположенной под углом α к горизонту. Ось диска образует угол β с линией наибольшего ската. Определить ускорение центра масс диска, считая, что его качение происходит в одной вертикальной плоскости.
39.13 Однородный цилиндр с горизонтальной осью скатывается под действием силы тяжести со скольжением по наклонной плоскости при коэффициенте трения скольжения f. Определить угол наклона плоскости к горизонту и ускорение оси цилиндра.
39.14 Однородное колесо радиуса r скатывается без скольжения по наклонной плоскости, образующей угол α с горизонтом. При каком значении коэффициента трения качения fк центр масс колеса будет двигаться равномерно, а колесо при этом будет равномерно вращаться вокруг оси, проходящей через центр масс перпендикулярно его плоскости?
39.15 На барабан однородного катка массы M и радиуса r, лежащего на горизонтальном шероховатом полу, намотана нить, к которой приложена сила T под углом α к горизонту. Радиус барабана a, радиус инерции катка ρ. Определить закон движения оси катка O. В начальный момент каток находился в покое, затем катился без скольжения.
39.16 Однородный стержень AB массы M горизонтально подвешен к потолку посредством двух вертикальных нитей, прикрепленных к концам стержня. Найти натяжение одной из нитей в момент обрыва другой. Указание. Составить дифференциальные уравнения движения стержня для весьма малого промежутка времени, следующего за моментом обрыва нити, пренебрегая изменением направления стержня и изменением расстояния центра масс стержня от другой нити.
online-tusa.com
|
SHOP