На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

2.77 В баллистический маятник массой M=5 кг попала пуля массой m=10 г и застряла в нем. Найти скорость v пули, если маятник, отклонившись после удара, поднялся на высоту h=10 см.

2.78 Два груза массами m1=10 кг и m2=15 кг подвешены на нитях длиной l=2 м так, что грузы соприкасаются между собой. Меньший груз был отклонен на угол φ=60° и выпущен. Определить высоту h, на которую поднимутся оба груза после удара. Удар грузов считать неупругим.

2.79 Два неупругих шара массами m1=2 кг и m2=3 кг движутся со скоростями соответственно v1=8 м/с и v2=4 м/с. Определить увеличение ΔU внутренней энергии шаров при их столкновении в двух случаях: 1) меньший шар нагоняет больший; 2) шары движутся навстречу друг другу.

2.80 Шар массой m1, летящий со скоростью v1=5 м/с, ударяет неподвижный шар массой m2. Удар прямой, неупругий. Определить скорость u шаров после удара, а также долю w кинетической энергии летящего шара, израсходованной на увеличение внутренней энергии этих шаров. Рассмотреть два случая: 1) m1=2 кг, m2=8 кг; 2) m1=8 кг, m2=2 кг.

2.81 Шар массой m1=2 кг налетает на покоящийся шар массой m2=8 кг. Импульс p1 движущегося шара равен 10 кг*м/с. Удар шаров прямой, упругий. Определить непосредственно после удара: 1) импульсы p1' первого шара и p2' второго шара; 2) изменение Δp1 импульса первого шара; 3) кинетические энергии T1' первого шара и T2' второго шара; 4) изменение ΔT1 кинетической энергии первого шара; 5) долю w кинетической энергии, переданной первым шаром второму.

2.82 Шар массой m1=6 кг налетает на другой покоящийся шар массой m2=4 кг. Импульс p1 первого шара равен 5 кг*м/с. Удар шаров прямой, неупругий. Определить непосредственно после удара: 1) импульсы p1' первого шара и p2' второго шара; 2) изменение Δp1 импульса первого шара; 3) кинетические энергии T1' первого шара и T2' второго шара; 4) изменение ΔT1 кинетической энергии первого шара; 5) долю w1 кинетической энергии, переданной первым шаром второму и долю w2 кинетической энергии, оставшейся у первого шара; 6) изменение ΔU внутренней энергии шаров; 7) долю w кинетической энергии первого шара, перешедшей во внутреннюю энергию шаров.

2.83 Молот массой m1=5 кг ударяет небольшой кусок железа, лежащий на наковальне. Масса m2 наковальни равна 100 кг. Массой куска железа пренебречь. Удар неупругий. Определить КПД η удара молота при данных условиях.

2.84 Боек свайного молота массой m1=500 кг падает с некоторой высоты на сваю массой m2=100 кг. Найти КПД η удара бойка, считая удар неупругим. Изменением потенциальной энергии сваи при углублении ее пренебречь.

2.85 Молотком, масса которого m1=1 кг, забивают в стену гвоздь массой m2=75 г. Определить КПД η удара молотка при данных условиях.

2.86 Шар массой m1=200 г, движущийся со скоростью v1=10 м/с, ударяет неподвижный шар массой m2=800 г. Удар прямой, абсолютно упругий. Каковы будут скорости u1 и u2 шаров после удара?

2.87 Шар массой m=1,8 кг сталкивается с покоящимся шаром большей массы M. В результате прямого упругого удара шар потерял w=0,36 своей кинетической энергии T1. Определить массу большего шара.

2.88 Из двух соударяющихся абсолютно упругих шаров больший шар покоится. В результате прямого удара меньший шар потерял w=3/4 своей кинетической энергии T1. Определить отношение k=M/m масс шаров.

2.89 Определить максимальную часть w кинетической энергии T1, которую может передать частица массой m1=2*10^-22 г, сталкиваясь упруго с частицей массой m2=6*10-22 г, которая до столкновения покоилась.

2.90 Частица массой m1=10^-25 кг обладает импульсом p1=5*10-20 кг*м/с. Определить, какой максимальный импульс p2 может передать эта частица, сталкиваясь упруго с частицей массой m2=4*10-25 кг, которая до соударения покоилась.

2.91 На покоящийся шар налетает со скоростью v1=2 м/с другой шар одинаковой с ним массы. В результате столкновения этот шар изменил направление движения на угол α=30°. Определить: 1) скорости u1 и u2 шаров после удара; 2) угол β между вектором скорости второго шара и первоначальным направлением движения первого шара. Удар считать упругим.

2.92 Частица массой m1=10^-24 г имеет кинетическую энергию T1=9 нДж. В результате упругого столкновения с покоящейся частицей массой m2=4*10-24 г она сообщает ей кинетическую энергию T2=5 нДж. Определить угол α, на который отклонится частица от своего первоначального направления.

1 пример 1. Кинематическое уравнение движения материальной точки по прямой (ось x) имеет вид x=A+Bt+Ct^3, где A=4 м, B=2 м/с, C=-0,5 м/с3. Для момента времени t1=2 с определить: 1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

1 пример 2. Кинематическое уравнение движения материальной точки по прямой (ось x) имеет вид x=A+Bt+Ct^2, где A=5 м, В=4 м/с, С=-1 м/с2. 1. Построить график зависимости координаты x и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 c. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

1 пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение*движения автомобиля ξ(t)=A+Bt+Ct^2, где A=10 м, B=10 м/с, C=-0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное aτ, нормальное an и полное a ускорения в момент времени t=5 c; 2) длину пути s и модуль перемещения |Δr| автомобиля за интервал времени τ=10 c, отсчитанный с момента начала движения. *В заданном уравнении движения ξ означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности.

1 пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с^-1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой n=6 с-1. Определить угловое ускорение ε маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N=50 оборотов.

1.1 Две прямые дороги пересекаются под углом α=60°. От перекрестка по ним удаляются машины: одна со скоростью v1=60 км/ч, другая со скоростью v2=80 км/ч. Определить скорости v' и v'', с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.

1.2 Точка двигалась в течение t1=15 с со скоростью v1=5 м/с, в течение t2=10 с со скоростью v2=8 м/с и в течение t3=6 с со скоростью v3=20 м/с. Определить среднюю путевую скорость <v> точки.

1.3 Три четверти своего пути автомобиль прошел со скоростью v1=60 км/ч, остальную часть пути-со скоростью v2=80 км/ч. Какова средняя путевая скорость <v> автомобиля?

1.4 Первую половину пути тело двигалось со скоростью v1=2 м/с, вторую-со скоростью v2=8 м/с. Определить среднюю путевую скорость <v>.

1.5 Тело прошло первую половину пути за время t1=2 c, вторую-за время t2=8 c. Определить среднюю путевую скорость <v> тела, если длина пути s=20 м.

online-tusa.com