На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
Сохранив условие предыдущей задачи, определить ускорение точки A в момент времени t=1 c.
18.4 Два одинаковых диска радиуса r каждый соединены цилиндрическим шарниром A. Диск I вращается вокруг неподвижной горизонтальной оси O по закону φ=φ(t). Диск II вращается вокруг горизонтальной оси A согласно уравнению ψ=ψ(t). Оси O и A перпендикулярны плоскости рисунка. Углы φ и ψ отсчитываются от вертикали против хода часовой стрелки (см. рисунок к задаче 16.5). Найти ускорение центра C диска II.
18.5 Сохранив условие предыдущей задачи, найти ускорение точки B диска II, если ∠ACB=π/2.
18.6 Линейка эллипсографа скользит концом B по оси Ox, концом A-по оси Oy, AB=20 см. (См. рисунок к задаче 15.1.) Определить скорость и ускорение точки A в момент, когда угол φ наклона линейки к оси Ox равен 30°, а проекции скорости и ускорения точки B на ось x равны vBx=-20 см/с, wBx=-10 см/с^2.
18.7 Муфты A и B, скользящие вдоль прямолинейных образующих, соединены стержнем AB длины l. Муфта A движется с постоянной скоростью vA (см. рисунок к задаче 15.6). Определить ускорение муфты B и угловое ускорение стержня AB в положении, при котором стержень AB образует с прямой OB заданный угол φ.
18.8 Найти ускорение ползуна B и мгновенный центр ускорений K шатуна AB кривошипно-ползунного механизма, изображенного на рисунке к задаче 16.41, при двух горизонтальных и одном вертикальном положениях кривошипа OA, вращающегося с постоянной угловой скоростью ω0=15 рад/с вокруг вала O. Длина кривошипа OA=40 см, длина шатуна AB=200 см.
18.9 Длина шатуна AB кривошипно-ползунного механизма в два раза больше длины кривошипа OA. Определить положение точки шатуна AB, ускорение которой направлено вдоль шатуна, в момент, когда кривошип перпендикулярен направляющей ползуна, кривошип OA вращается равномерно.
18.10 Поршень D гидравлического пресса приводится в движение посредством шарнирно-рычажного механизма OABD. В положении, указанном на рисунке 16.24, рычаг OL имеет угловую скорость ω=2 рад/с и угловое ускорение ε=4 рад/с^2, OA=15 см. Определить ускорение поршня D и угловое ускорение звена AB.
18.11 Кривошип OA длины 20 см вращается равномерно с угловой скоростью ω0=10 рад/с и приводит в движение шатун AB длины 100 см; ползун B движется по вертикали. Найти угловую скорость и угловое ускорение шатуна, а также ускорение ползуна B в момент, когда кривошип и шатун взаимно перпендикулярны и образуют с горизонтальной осью углы α=45° и β=45°.
18.12 Определить угловую скорость и угловое ускорение шатуна нецентрального кривошипного механизма, а также скорость и ускорение ползуна B при 1) горизонтальном правом и 2) вертикальном верхнем положении кривошипа OA, если последний вращается вокруг конца O с постоянной угловой скоростью ω0, причем даны: OA=r, AB=l, расстояние оси O кривошипа от линии движения ползуна OC=h (см. рисунок к задаче 16.16).
18.13 Стержень OA шарнирного четырехзвенника OABO1 вращается с постоянной угловой скоростью ω0. Определить угловую скорость, угловое ускорение стержня AB, а также ускорение шарнира B в положении, указанном на рисунке, если AB=2OA=2a.
18.14 Подвижное лезвие L ножниц для резки металла приводится в движение шарнирно-рычажным механизмом AOBD. В положении, указанном на рисунке к задаче 16.25, угловая скорость рычага AB равна 2 рад/с, его угловое ускорение равно 4 рад/с^2, OB=5 см, O1D=10 см. Найти ускорение шарнира D и угловое ускорение звена BD.
18.15 Ползун B кривошипно-ползунного механизма OAB движется по дуговой направляющей. Определить касательное и нормальное ускорения ползуна B в положении, указанном на рисунке, если OA=10 см, AB=20 см. Кривошип OA вращается, имея в данный момент угловую скорость ω=1 рад/с, угловое ускорение ε=0.
18.16 Определить угловое ускорение шатуна AB механизма, рассмотренного в предыдущей задаче, если в положении, указанном на рисунке, угловое ускорение кривошипа OA равно 2 рад/с^2.
18.17 Точильный станок приводится в движение педалью OA=24 см, которая колеблется около оси O по закону φ=(π/6)sin(πt/2) рад (угол φ отсчитывается от горизонтали). Точильный камень K вращается вокруг оси O1 с помощью стержня AB. Оси O и O1 перпендикулярны плоскости рисунка (см. рисунок к задаче 16.12). Найти в момент времени t=0 ускорение точки B точильного камня K, если O1B=12 см. В этот момент OA и O1B расположены горизонтально, причем ∠OAB=60°.
18.18 Антипараллелограмм состоит из двух кривошипов AB и CD одинаковой длины 40 см и шарнирно соединенного с ними стержня BC длины 20 см. Расстояние между неподвижными осями A и D равно 20 см. Кривошип AB вращается с постоянной угловой скоростью ω0. Определить угловую скорость и угловое ускорение стержня BC в момент, когда угол ADC равен 90°.
18.19 В машине с качающимся цилиндром, лежащим на цапфах O1, длина кривошипа OA=12 см, длина шатуна AB=60 см; расстояние между осью вала и осью цапф цилиндра OO1=60 см. Определить ускорение поршня B и радиус кривизны его траектории при двух положениях цилиндра: 1) когда кривошип и шатун взаимно перпендикулярны и 2) когда кривошип занимает положение III; угловая скорость кривошипа ω0=const=5 рад/с. (См. рисунок к задаче 16.26.)
18.20 Жесткий прямой угол AME движется так, что точка A остается все время на неподвижной прямой Oy, тогда как другая сторона ME проходит через вращающийся шарнир B. Расстояние AM=OB=a. Скорость vA точки А постоянна. Определить ускорение точки M как функцию угла φ.
18.21 Центр колеса, катящегося без скольжения по прямолинейному рельсу, движется равномерно со скоростью v. Определить ускорение любой точки, лежащей на ободе колеса, если его радиус равен r.
18.22 Вагон трамвая движется по прямолинейному горизонтальному участку пути с замедлением w0=2 м/с^2, имея в данный момент скорость v0=1 м/с. Колеса катятся по рельсам без скольжения. Найти ускорения концов двух диаметров ротора, образующих с вертикалью углы по 45°, если радиус колеса R=0,5 м, а ротора r=0,25 м.
18.23 Колесо катится без скольжения в вертикальной плоскости по наклонному прямолинейному пути. Найти ускорение концов двух взаимно перпендикулярных диаметров колеса, из которых один параллелен рельсу, если в рассматриваемый момент времени скорость центра колеса v0=1 м/с, ускорение центра колеса w0=3 м/с2, радиус колеса R=0,5 м.
18.24 Колесо радиуса R=0,5 м катится без скольжения по прямолинейному рельсу, в данный момент центр O колеса имеет скорость v0=0,5 м/с и замедление w0=0,5 м/с^2. Найти: 1) мгновенный центр ускорения колеса, 2) ускорение wC точки колеса, совпадающей с мгновенным центром C скоростей, а также 3) ускорение точки M и 4) радиус кривизны ее траектории, если OM=MC=0,5R.
18.25 Подвижный блок 1 и неподвижный блок 2 соединены нерастяжимой нитью. Груз K, прикрепленный к концу этой нити, опускается вертикально вниз по закону x=2t^2 м. Определить ускорение точек C, B и D, лежащих на ободе подвижного блока 1, в момент t=0,5 с в положении, указанном на рисунке, если OB⊥CD, а радиус подвижного блока 1 равен 0,2 м.
18.26 Груз K, связанный посредством нерастяжимой нити с катушкой L, опускается вертикально вниз по закону x=t^2 м. При этом катушка L катится без скольжения по неподвижному горизонтальному рельсу. Определить ускорения точек A, B и D, лежащих на ободе катушки, ее угловую скорость и угловое ускорение в момент времени t=0,5 с в положении, указанном на рисунке; AD⊥OB, OD=2OC=0,2 м.
18.27 Колесо радиуса R катится без скольжения по плоскости. Центр O колеса движется с постоянной скоростью vO. В точке A с ним шарнирно соединен стержень AB длины l=3R. Другой конец стержня скользит по плоскости. В положении, указанном на рисунке, определить угловую скорость и угловое ускорение стержня AB, а также линейные скорость и ускорение его точки B.
online-tusa.com
|
SHOP