На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Решение задач

Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Число записей в разделе: 15897

4.53 Однородный стержень AB длины 2l и веса P может вращаться вокруг горизонтальной оси на конце A стержня. Он опирается на однородный стержень CD той же длины 2l, который может вращаться вокруг горизонтальной оси, проходящей через его середину E. Точки A и E лежат на одной вертикали на расстоянии AE=l. К концу D подвешен груз Q=2P. Определить угол φ, образуемый стержнем AB с вертикалью в положении равновесия, пренебрегая трением.

4.54 Два однородных стержня AB и AC опираются в точке A на гладкий горизонтальный пол и друг на друга по гладким вертикальным плоскостям, а в точках B и C на гладкие вертикальные стены. Определить расстояние DE между стенами, при котором стержни находятся в положении равновесия, образуя друг с другом угол в 90°, если дано: длина AB равна a, длина AC равна b, вес AB равен P1, вес AC равен P2.

4.55 Однородный брусок AB, который может вращаться вокруг горизонтальной оси A, опирается на поверхность гладкого цилиндра радиуса r, лежащего на гладкой горизонтальной плоскости и удерживаемого нерастяжимой нитью AC. Вес бруска 16 Н; длина AB=Зr, AC=2r. Определить натяжение нити T и силу давления бруска на шарнир A.

4.56 Между двумя гладкими наклонными плоскостями OA и OB положены два гладких соприкасающихся однородных цилиндра: цилиндр с центром C1 веса P1=10 Н и цилиндр с центром C2 веса P2=30 Н. Определить угол φ, составляемый прямой C1C2 с горизонтальной осью xOx1, давления N1 и N2 цилиндров на плоскости, а также силу N взаимного давления цилиндров, если угол AOx1=60°, а угол BOx=30°.

4.57 Два гладких однородных шара C1 и C2, радиусы которых R1 и R2, а веса P1 и P2, подвешены на веревках AB и AD в точке A; AB=l1; AD=l2; l1+R1=l2+R2; угол BAD=α. Определить угол θ, образуемый веревкой AD с горизонтальной плоскостью AE, натяжения веревок T1, T2 и силу давления одного шара на другой.

4.58 На двух одинаковых круглых однородных цилиндрах радиуса r и веса P каждый, лежащих на горизонтальной плоскости и связанных за центры нерастяжимой нитью длины 2r, покоится третий однородный цилиндр радиуса R и веса Q. Определить натяжение нити, давление цилиндров на плоскость и взаимное давление цилиндров. Трением пренебречь.

4.59 Три одинаковых трубы веса M=120 Н каждая лежат, как указано на рисунке. Определить давление каждой из нижних труб на землю и на удерживающие их с боков стенки. Трением пренебречь.

4.60 Ферма ABCD в точке D опирается на катки, а в точках А и В поддерживается наклонными стержнями AE и BF шарнирно укрепленными в точках E и F. Раскосы фермы и прямая EF наклонены к горизонту под углом 45; Длина панели BC=3 м; стержни AE, BF одинаковой длины. Расстояние EF=3√2 м. АН=2,25√2 м. Вес фермы равен 25 кН и направлен по вертикали, проходящей через точку C. Вес нагрузки 112,5 Н. Определить на каком расстоянии x от точки В нужно расположить нагрузку, чтобы рекция на опоре D стала равна нулю

4.61 Механизм робота-манипулятора представляет собой шарнирный трехзвенник; звенья поворачиваются в вертикальной плоскости. Найти моменты сил приводов в шарнирах A и B механизма робота-манипулятора, необходимые для того чтобы удерживать звенья механизма в горизонтальном положении. Масса объекта манипулирования mC=15 кг. Длины звеньев: l1=0,7 м, l2=0,5 м. Звенья однородные и их массы соответственно равны: m1=35 кг, m2=25 кг.

4.62 Найти моменты сил приводов в шарнирах механизма робота-манипулятора, находящегося в равновесии, когда второе звено поднято под углом 30° к горизонту. Масса объекта манипулирования mC=15 кг. Длины звеньев: l1=0,7 м, l2=0,5 м. Массы звеньев: m1=35 кг, m2=25 кг.

4.63 Механизм робота-манипулятора в положении равновесия расположен в вертикальной плоскости. Длины звеньев: l1=0,8 м, l2=0,5 м, l3=0,3 м. Массы звеньев: m1=40 кг, m2=25 кг, m3=15 кг. Найти моменты сил приводов в шарнирах, если рука CD манипулятора несет груз, масса которого mD=15 кг. Звенья считать однородными стержнями.

4.64 Рука механизма робота-манипулятора удерживает в равновесии груз, масса которого mD=15 кг. Пружина разгрузочного устройства, предназначенного для уменьшения нагрузки на привод, действует на первое звено силой F=3000 Н, приложенной на расстоянии AE=0,2 м от шарнира A. Найти моменты сил в шарнирах. Длины звеньев: l1=0,8 м, l2=0,5 м, l3=0,3 м. Массы звеньев: m1=40 кг, m2=25 кг, m3=15 кг. Звенья считать однородными стержнями.

4.65 Определить опорные реакции и усилия в стержнях крана, изображенного на рисунке, при нагрузке в 8 кН. Весом стержня пренебречь.

4.66 Определить опорные реакции и усилия в стержнях стропильной фермы, изображенной вместе с приложенными к ней силами на рисунке.

4.67 Определить опорные реакции и усилия в стержнях пильчатой фермы, изображенной вместе с действующими на нее силами на рисунке.

4.68 Определить опорные реакции и усилия в стержнях фермы крана, изображенного вместе с приложенными к нему силами на рисунке.

4.69 Определить опорные реакции и усилия в стержнях сооружения, изображенного вместе с действующими на него силами на рисунке. Как в этой, так и в следующих задачах ось Ox направлена по горизонтальной прямой AB вправо, а ось Oy-по вертикали вверх.

4.70 Определить опорные реакции и усилия в стержнях раскосной фермы, изображенной на рисунке вместе с нагрузкой.

4.71 Определить опорные реакции и усилия в стержнях мостовой фермы, которая вместе с приложенными к ней силами изображена на рисунке.

4.72 Определить опорные реакции и усилия в стержнях сооружения, изображенного вместе с приложенными к нему силами на рисунке. Стержни 3 и 4 не соединены шарниром в точке их пересечения.

4.73 Определить опорные реакции и усилия в стержнях навесной фермы, изображенной вместе с действующими на нее силами на рисунке.

4.74 В узлах стропильной фермы с равными панелями вследствие давления ветра возникают силы, перпендикулярные кровле: P1=P4=312,5 Н и P2=P3=625 Н. Определить вызываемые ветром реакции опор и усилия в стержнях фермы, размеры которой указаны на рисунке.

5.1 Определить необходимую затяжку болта, скрепляющего две стальные полосы, разрываемые силой P=2 кН. Болт поставлен с зазором и не должен работать на срез. Коэффициент трения между листами равен 0,2. Указание. Болт не должен работать на срез, поэтому его надо затянуть с такой силой, чтобы развивающееся между листами трение могло предотвратить скольжение листов. Сила, действующая вдоль оси болта, и является искомой затяжкой.

5.2 Листы бумаги, сложенные, как показано на рисунке, склеиваются свободными концами через лист таким образом, что получаются две самостоятельные кипы A и B. Вес каждого листа 0,06 Н, число всех листов 200, коэффициент трения бумаги о бумагу, а также о стол, на котором бумага лежит, равен 0,2. Предполагая, что одна из кип удерживается неподвижно, определить наименьшее горизонтальное усилие P, необходимое для того, чтобы вытащить вторую кипу.

5.3 Вагон, спускающийся по уклону в 0,008, достигнув некоторой определенной скорости, движется затем равномерно. Определить сопротивление R, которое испытывает вагон при этой скорости, если вес вагона равен 500 кН. Уклоном пути называется тангенс угла наклона пути к горизонту; вследствие малости уклона синус может быть принят равным тангенсу этого угла.

online-tusa.com