Решение задачРешенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинамСтраницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
Число записей в разделе: 15897
Задание Д.3 вариант 20. На груз D, находящийся в состоянии покоя, соответствующем статической деформации пружины, в некоторый момент времени устанавливают груз E. В этот же момент времени системе двух грузов сообщают скорость v0=0,3 м/с, направленную вниз. Циклическая частота собственных колебаний груза D на пружине kD=24 рад/с, отношение масс mE/mD=3.
Задание Д.3 вариант 21. В некоторый момент времени груз D (ш=2 кг) прикрепляют к концам недеформированных пружин, имеющих коэффициенты жесткости c1=7 Н/см и c2=3 Н/см; одновременно грузу сообщают скорость v0=0,4 м/с, направленную вдоль наклонной плоскости (α=45°) вниз.
Задание Д.3 вариант 22. Груз D находится на наклонной плоскости (α=30°) в состоянии покоя, соответствующем статической деформации пружины fст=2 см. В некоторый момент времени (t=0) точка B (верхний конец пружины) начинает совершать движение по закону ξ=0,01sin 10t (м) (ось ξ, направлена вдоль наклонной плоскости вниз). Примечание. Положение начала отсчета на оси x соответствует среднему положению точки B (ξ=0).
Задание Д.3 вариант 23. Груз D (m=3 кг) прикрепляют к точке F бруска AB, соединяющего концы двух недеформированных параллельных пружин, и отпускают без начальной скорости. Коэффициенты жесткости пружин c1=2 Н/см и c2=4 Н/см. Точка F находится на расстояниях a и b от осей пружины: a/b=c2/c1; α=60°. Сопротивление движению груза пропорционально скорости: R=12v, где v-скорость. Массой бруска AB и массой демпфера пренебречь.
Задание Д.3 вариант 24. В некоторый момент времени груз D (m=1 кг) прикрепляют к концу A недеформированных последовательно соединенных пружин, имеющих коэффициенты жесткости c1=12 Н/см и c2=4 Н/см, и отпускают без начальной скорости. Одновременно (t=0) другой конец пружин B начинает совершать движение по закону ξ=1,5sin 10t (см). Ось ξ направлена вдоль наклонной плоскости вниз (α=30) (см. примечание к варианту 22).
Задание Д.3 вариант 25. Концы двух одинаковых параллельных пружин соединены бруском AB. Статическая деформация каждой из пружин под действием груза D (m=1,5 кг), находящегося на наклонной плоскости (α=30°), fст=4,9 см. В некоторый момент грузу D сообщают скорость v0=0,3 м/с, направленную вверх вдоль наклонной плоскости. Сопротивление движению груза пропорционально скорости груза: R=6v, где v-скорость. Массой абсолютно жесткого бруска AB и массой части демпфера, связанной с бруском, пренебречь.
Задание Д.3 вариант 26. Плита лежит на двух параллельных пружинах, имеющих коэффициенты жесткости c1=600 Н/см и c2=400 Н/см. Груз D (m=50 кг) падает без начальной скорости с высоты h=0,1 м в точку F плиты, находящуюся на расстояниях a и b от осей пружин: a/b=c2/c1.
Задание Д.3 вариант 27. Коэффициент жесткости каждой из двух параллельных пружин, на которых лежит плита, c=130 Н/см. Груз D (m=40 кг) устанавливают на середину плиты и отпускают без начальной скорости при недеформированных пружинах. Сопротивление движению груза пропорционально скорости: R=400v, где v-скорость. Массой плиты и демпфера пренебречь.
Задание Д.3 вариант 28. Груз D падает на плиту с высоты h=5 см. Статический прогиб пружины под действием этого груза fст=1 см.
Задание Д.3 вариант 29. Плита лежит на двух одинаковых параллельных пружинах 1 и 2, коэффициенты жесткости которых c1=c2=c=400 Н/см. В некоторый момент времени груз D (m=200 кг) устанавливают на середину плиты и одновременно прикрепляют к недеформированной пружине 3, имеющей коэффициент жесткости c3=200 Н/см. В тот же момент времени (при недеформированных пружинах) грузу сообщают скорость v0=0,6 м/с, направленную вниз.
Задание Д.3 вариант 30. В некоторый момент времени груз D (m=100 кг) устанавливают на плиту и отпускают (при недеформированной пружине) без начальной скорости. В этот же момент времени точка B (нижний конец пружины) начинает совершать движение по вертикали согласно закону ξ=0,5sin 20t (см) (ось ξ направлена вниз). Коэффициент жесткости пружины c=2000 Н/см. Примечание. Начало отсчета на оси x соответствует среднему положению точки B (ξ=0).
Яблонский задание Д.4. Исследование относительного движения материальной точки. Шарик M, рассматриваемый как материальная точка, перемещается по цилиндрическому каналу движущегося тела A (рис. 129-131). Найти уравнение относительного движения этого шарика x=f(t), приняв за начало отсчета точку O. Тело A равномерно вращается вокруг неподвижной оси (в вариантах 2, 3, 4, 7, 10, 11, 14, 20, 23, 26 и 30 ось вращения z1 вертикальна, в вариантах 1, 12, 15 и 25 ось вращения x1 горизонтальна). В вариантах 5, 6, 8, 9, 13, 16, 17, 18, 19, 21, 22, 24, 27, 28 и 29 тело A движется поступательно, параллельно вертикальной плоскости y1O1z1. Найти также координату x и давление шарика на стенку канала при заданном значении t=t1. Данные, необходимые для выполнения задания, приведены в табл. 40. В задании приняты следующие обозначения: m-масса шарика M; ω-постоянная угловая скорость тела A (в вариантах 1-4, 7, 10-12, 14, 15, 20, 23, 25, 26, 30) или кривошипов O1B и O2C (в вариантах 6, 17, 22); c-коэффициент жесткости пружины, к которой прикреплен шарик M; l0-длина недеформированной пружины; f-коэффициент трения скольжения шарика по стенке канала; x0, x'0-начальная координата и проекция начальной скорости на ось x. Пример решения; Вариант 1; Вариант 2; Вариант 3; Вариант 4; Вариант 5; Вариант 6; Вариант 7; Вариант 8; Вариант 9; Вариант 10; Вариант 11; Вариант 12; Вариант 13; Вариант 14; Вариант 15; Вариант 16; Вариант 17; Вариант 18; Вариант 19; Вариант 20; Вариант 21; Вариант 22; Вариант 23; Вариант 24; Вариант 25; Вариант 26; Вариант 27; Вариант 28; Вариант 29; Вариант 30;
Д4 пример 1 (рис. 132). Дано: α=30°, ω=п рад/с; m=0,01 кг; т=0,2 c; x0=0,3 м; x'0=2 м/с; c=1 Н/м; l0=0,2 м; r=0,2 м. Найти уравнение x=x (t) относительного движения шарика M, а также координату x1 и давление шарика на стенку канала при заданном t=t1.
Задание Д.4 вариант 1. m=0,02 кг; ω=π рад/с; x0=0 м; x0'=0,4 м/с; t1=0,5 с; f=0
Задание Д.4 вариант 2. m=0,02 кг; ω=π рад/с; x0=0 м; x0'=0,2 м/с; t1=0,4 с; rh=0,15 м; f=0
Задание Д.4 вариант 3. α=45 град; m=0,03 кг; ω=2 π рад/с; x0=0,5 м; x0'=0 м/с; t1=0,2 с; f=0
Задание Д.4 вариант 4. m=0,09 кг; ω=4 π рад/с; x0=0,2 м; x0'=-0,8 м/с; t1=0,1 с; c=0,36 Н/см; l0=0,15 м; f=0
Задание Д.4 вариант 5. α=60 град; m=0,02 кг; x0=0,6 м; x0'=0 м/с; t1=0,2 с; y1=0,6-2t^3 (М); f=0
Задание Д.4 вариант 6. m=0,01 кг; ω=10 π рад/с; x0=0,5 м; x0'=0 м/с; t1=0,2 с; rh=0,10 м; f=0
Задание Д.4 вариант 7. m=0,03 кг; ω=2 π рад/с; x0=0,3 м; x0'=0 м/с; t1=0,2 с; rh=0,20 м; f=0
Задание Д.4 вариант 8. α=30 град; m=0,03 кг; x0=0,8 м; x0'=0 м/с; t1=0,1 с; z1=0,1cos 2πt(м); f=0
Задание Д.4 вариант 9. α=30 град; m=0,02 кг; x0=0,4 м; x0'=0 м/с; t1=0,1 с; c=0,20 Н/см; l0=0,20 м; y1=4t^3 (м); f=0
Задание Д.4 вариант 10. α=60 град; m=0,05 кг; ω=6 π рад/с; x0=0,4 м; x0'=0 м/с; t1=0,1 с; rh=0,20 м; f=0
Задание Д.4 вариант 11. α=30 град; m=0,05 кг; ω=π рад/с; x0=0 м; x0'=0 м/с; t1=0,4 с; f=0
Задание Д.4 вариант 12. m=0,08 кг; ω=6 π рад/с; x0=0,05 м; x0'=0 м/с; t1=0,1 с; c=0,20 Н/см; l0=0,10 м; f=0
|