На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
10.9 Груз, поднятый на упругом канате, колеблется согласно уравнению x=a sin(kt+Зπ/2), где a-в сантиметрах, k-в рад/с. Определить амплитуду и круговую частоту колебаний груза, если период колебаний равен 0,4 с и в начальный момент x0=-4 см. Построить также кривую расстояний.
10.10 Определить траекторию точки, совершающей одновременно два гармонических колебания равной частоты, но разных амплитуд и фаз, если колебания происходят по двум взаимно перпендикулярным осям: x=a sin(kt+α), y=b sin(kt+β).
10.11 Найти уравнение траектории движения точки, получающегося при сложении взаимно перпендикулярных колебаний разной частоты: 1) x=a sin 2ωt, y=a sin ωt; 2) x=a cos 2ωt, y=a cos ωt.
10.12 Кривошип OA вращается с постоянной угловой скоростью ω=10 рад/с. Длина OA=AB=80 см. Найти уравнения движения и траекторию средней точки M шатуна, а также уравнение движения ползуна B, если в начальный момент ползун находился в крайнем правом положении; оси координат указаны на рисунке.
10.13 Определить уравнения движения и траекторию точки обода колеса радиуса R=1 м автомобиля, если автомобиль движется по прямолинейному пути с постоянной скоростью 20 м/с. Принять, что колесо катится без скольжения; за начало координат взять начальное положение точки на пути, принятом за ось Ox.
10.14 Даны уравнения движения снаряда x=v0 cos α t, y=v0 sin α t-gt2/2, где v0-начальная скорость снаряда, α-угол между v0 и горизонтальной осью x, g-ускорение силы тяжести. Определить траекторию движения снаряда, высоту H, дальность L и время T полета снаряда.
10.15 В условиях предыдущей задачи определить, при каком угле бросания α дальность полета L будет максимальной. Найти соответствующие высоту и время полета.
10.16 В условиях задачи 10.14 определить угол бросания α, при котором снаряд попадает в точку A с координатами x и y.
10.17 Определить параболу безопасности (все точки, лежащие вне этой параболы, не могут быть достигнуты снарядом при данной начальной скорости v0 и любом угле бросания α).
10.18 Точка движется по винтовой линии x=a cos kt, y=a sin kt, z=vt. Определить уравнения движения точки в цилиндрических координатах.
10.19 Даны уравнения движения точки: x=2a cos2(kt/2), y=a sin kt, где a и k-положительные постоянные. Определить траекторию и закон движения точки по траектории, отсчитывая расстояние от начального положения точки.
10.20 В условиях предыдущей задачи определить уравнения движения точки в полярных координатах.
10.21 По заданным уравнениям движения точки в декартовых координатах x=R cos^2 (kt/2), y=(R/2) sin (kt), z=R sin (kt/2) найти ее траекторию и уравнения движения в сферических координатах.
10.22 Точка участвует одновременно в двух взаимно перпендикулярных затухающих колебаниях, уравнения которых имеют вид x=Ae^-ht cos(kt + ε), y=Ae-ht sin(kt + ε), где A > 0, h > 0, k > 0 и ε-некоторые постоянные. Определить уравнения движения в полярных координатах и найти траекторию точки.
10.23 Плоский механизм манипулятора переносит груз из одного положения в другое по траектории, определяемой полярными координатами центра схвата rC=rC(t), φC=φC(t). Найти: 1) законы изменения углов ψ1 и ψ2, отрабатываемых соответствующими приводами, обеспечивающие выполнение заданной программы; 2) законы изменения этих углов, если груз перемещается по прямой, параллельной оси y, отстоящей от нее на расстоянии a по закону y=s(t), где s-заданная функция времени t.
11.1 Точка совершает гармонические колебания по закону x=a sin kt. Определить амплитуду a и круговую частоту k колебаний, если при x=x1 скорость v=v1, а при x=x2 скорость v=v2.
11.2 Длина линейки эллипсографа AB=40 см, длина кривошипа OC=20 см, AC=CB. Кривошип равномерно вращается вокруг оси O с угловой скоростью ω. Найти уравнения траектории и годографа скорости точки M линейки, лежащей на расстоянии AM=10 см от конца A.
11.3 Точка описывает фигуру Лиссажу согласно уравнениям x=2 cos t, y=4 cos 2t (x, y-в сантиметрах, t-в секундах). Определить величину и направление скорости точки, когда она находится на оси Oy.
11.4 Кривошип OA вращается с постоянной угловой скоростью ω. Найти скорость середины M шатуна кривошипноползунного механизма и скорость ползуна B в зависимости от времени, если OA=AB=a (см. рисунок к задаче 10.12).
11.5 Движение точки задано уравнениями x=v0t cos α0, y=v0t sin α0-gt^2/2, причем ось Ox горизонтальна, ось Oy направлена по вертикали вверх, v0, g и α0 < π/2-величины постоянные. Найти: 1) траекторию точки, 2) координаты наивысшего ее положения, 3) проекции скорости на координатные оси в тот момент, когда точка находится на оси Ox.
11.6 Движение точки задано теми же уравнениями, что и в предыдущей задаче, причем v0=20 м/с, α0=60°, g=9,81 м/с^2. Найти, с какой скоростью v1 должна выйти из начала координат в момент t=0 вторая точка для того, чтобы, двигаясь равномерно по оси Ox, она встретилась с первой точкой, и определить расстояние x1 до места встречи.
11.7 Определить высоты h1, h2 и h3 над поверхностью воды трех пунктов отвесного берега, если известно, что три пули, выпущенные одновременно в этих пунктах с горизонтальными скоростями 50, 75 и 100 м/с, одновременно упали в воду, причем расстояние точки падения первой пули от берега равно 100 м; принять во внимание только ускорение силы тяжести g=9,81 м/с2. Определить также продолжительность T полета пуль и их скорости v1, v2 и v3 в момент падения в воду.
11.8 Из орудия, ось которого образует угол 30° с горизонтом, выпущен снаряд со скоростью 500 м/с. Предполагая, что снаряд имеет только ускорение силы тяжести g=9,81 м/с^2, найти годограф скорости снаряда и скорость точки, вычерчивающей годограф.
11.9 Определить уравнения движения и траекторию точки колеса электровоза радиуса R=1 м, лежащей на расстоянии a=0,5 м от оси, если колесо катится без скольжения по горизонтальному прямолинейному участку пути; скорость оси колеса v=10 м/с. Ось Ox совпадает с рельсом, ось Oy-с радиусом точки при ее начальном низшем положении. Определить также скорость этой точки в те моменты времени, когда диаметр колеса, на котором она расположена, займет горизонтальное и вертикальное положения.
11.10 Скорость электровоза v0=72 км/ч; радиус колеса его R=1 м; колесо катится по прямолинейному рельсу без скольжения. 1) Определить величину и направление скорости v точки M на ободе колеса в тот момент, когда радиус точки M составляет с направлением скорости v0 угол ^π/2+α. 2) Построить годограф скорости точки M и определить скорость v1 точки, вычерчивающей годограф.
online-tusa.com
|
SHOP