На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
Решенные задачи из задачников для школьников, абитуриентов, студентов по всем учебным дисциплинам
Задачи по физике с решениями
Задачи по химии с решениями
Задачи по геометрии с решениями
Задачи по теоретической механике с решениями
Задачи по математике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
Число записей в разделе: 15897
55.8 Два одинаковых физических маятника подвешены на параллельных горизонтальных осях, расположенных в одной горизонтальной плоскости, и связаны упругой пружиной, длина которой в ненапряженном состоянии равна расстоянию между осями маятников. Пренебрегая сопротивлением движению и массой пружины, определить частоты и отношения амплитуд главных колебаний системы при малых углах отклонения от равновесного положения. Вес каждого маятника P; радиус инерции его относительно оси, проходящей через центр масс параллельно оси подвеса, ρ; жесткость пружины k, расстояния от центра масс маятника и от точки прикрепления пружины к маятникам до оси подвеса равны соответственно l и h. (См. рисунок к задаче 55.4.)
55.9 Однородный стержень AB длины L подвешен при помощи нити длины l=0,5L к неподвижной точке. Пренебрегая массой нити, определить частоты главных колебаний системы и найти отношение отклонений стержня и нити от вертикали при первом и втором главных колебаниях.
55.10 Предполагая в предыдущей задаче, что длина нити весьма велика по сравнению с длиной стержня, и пренебрегая квадратом отношения L/l, определить отношение низшей частоты свободных колебаний системы к частоте колебаний математического маятника длины l.
55.11 Считая в задаче 55.9, что длина нити весьма мала по сравнению с длиной стержня, и пренебрегая квадратом отношения l/L, определить отношение низшей частоты свободных колебаний системы к частоте колебаний физического маятника, если ось вращения поместить в конце стержня.
55.12 Определить частоты главных колебаний двойного математического маятника при условии, что массы грузов M1 и M2 соответственно равны m1 и m2, OM1=l1, M1M2=l2, а к грузу M1 присоединена пружина, массой которой можно пренебречь. Длина пружины в ненапряженном состоянии равна l0, жесткость пружины k.
55.13 Двойной физический маятник состоит из однородного прямолинейного стержня O1O2 длины 2a и веса P1, вращающегося вокруг неподвижной горизонтальной оси O1, и из однородного прямолинейного стержня AB веса P2, шарнирно соединенного в своем центре масс с концом O2 первого стержня. Определить движение системы, если в начальный момент стержень O1O2 отклонен на угол φ0 от вертикали, а стержень AB занимает вертикальное положение и имеет начальную угловую скорость ω0.
55.14 Стержень AB веса P подвешен за концы A и B к потолку на двух одинаковых нерастяжимых нитях длины a. К стержню AB подвешена на двух одинаковых нерастяжимых нитях длины b балка CD веса Q. Предполагая, что колебания происходят в вертикальной плоскости, найти частоты главных колебаний. Массами нитей пренебречь.
55.15 Исследовать колебания железнодорожного вагона в его средней вертикальной плоскости, если вес подрессоренной части вагона Q, расстояния центра масс от вертикальных плоскостей, проведенных через оси, l1=l2=l; радиус инерции относительно центральной оси, параллельной осям вагона, ρ; жесткость рессор для обеих осей одинакова: k1=k2=k.
55.16 Исследовать малые свободные колебания груженой платформы веса P, опирающейся в точках A и B на две рессоры одинаковой жесткости k. Центр масс C платформы с грузом находится на прямой AB, причем AC=a и CB=b. Платформа выведена из положения равновесия путем сообщения центру масс начальной скорости v0, направленной вертикально вниз без начального отклонения. Массы рессор и силы трения не учитывать. Момент инерции платформы относительно горизонтальной поперечной оси, проходящей через центр масс платформы, равен JC=0,1(a^2+b2)P/g. Колебания происходят в вертикальной плоскости. За обобщенные координаты принять: y-отклонение центра масс от положения равновесия вниз, ψ-угол поворота платформы вокруг центра масс.
55.21 Круглый однородный диск радиуса r и массы M связан шарниром со стержнем OA длины l, могущим поворачиваться около неподвижной горизонтальной оси. На окружности диска закреплена материальная точка B массы m. Определить частоты свободных колебаний системы. Массой стержня пренебречь. Диск может вращаться в плоскости колебаний стержня OA.
55.25 К движущейся по заданному закону ξ=ξ(t) платформе подвешена на пружине жесткости c1 механическая система, состоящая из массы m1, к которой жестко присоединен в точке B поршень демпфера. Камера демпфера, масса которого равна m2, опирается на пружину жесткости c2, противоположный конец которой прикреплен к поршню. Вязкое трение в демпфере пропорционально относительной скорости поршня и камеры; ρ-коэффициент сопротивления. Составить уравнения движения системы.
55.38 Определить уравнения вынужденных колебаний системы дисков, описанной в задаче 55.2, при действии на средний диск возмущающего момента M=M0 sin pt.
55.41 Для поглощения крутильных колебаний к одной из колеблющихся масс системы прикрепляется маятник. На рисунке схематически изображена система, состоящая из двух масс I и II, вращающихся с постоянной угловой скоростью ω. Ко второй массе прикреплен маятник. Моменты инерции масс относительно оси вращения J1 и J2; момент инерции маятника относительно оси, параллельной оси вращения системы и проходящей через центр масс маятника, J3. Расстояние между осью вращения системы и осью подвеса маятника OA=l; расстояние между осью подвеса и параллельной осью, проходящей через центр масс маятника, AC=a; масса маятника m. Коэффициент упругости (жесткость при кручении) участка вала между массами k1. Ко второй массе приложен внешний момент M=M0 sin ωt. Написать дифференциальные уравнения движения обеих масс системы и маятника. При составлении выражения для потенциальной энергии системы пренебречь потенциальной энергией маятника в поле силы тяжести.
55.44 Три железнодорожных груженых вагона веса Q1, Q2 и Q3 сцеплены между собой. Жесткости сцепок равны k1 и k2. Найти частоты главных колебаний системы.
56.3 Тяжелый шарик находится в полости гладкой трубки, изогнутой по параболе x^2=2pz и вращающейся с постоянной угловой скоростью ω вокруг оси Oz. (Положительное направление оси Oz-вверх.) Определить положение относительного равновесия шарика и исследовать его устойчивость.
56.7 Определить положения относительного равновесия маятника, подвешенного с помощью универсального шарнира O к вертикальной оси, вращающейся с постоянной угловой скоростью ω; маятник симметричен относительно своей продольной оси; A и C-его моменты инерции относительно главных центральных осей инерции ξ, η и ζ; h-расстояние центра тяжести маятника от шарнира. Исследовать устойчивость положений равновесия маятника и определить период колебаний около среднего положения равновесия.
56.9 Материальная точка M движется под действием силы тяжести по внутренней поверхности кругового цилиндра радиуса a, ось которого наклонена под углом α к вертикали. Исследовать устойчивость движения по нижней (φ=0) и верхней (φ=π) образующим. Определить период колебаний при движении по нижней образующей.
56.17 Уравнение движения муфты центробежного регулятора двигателя имеет вид mx'' + βx' + cx=A(ω-ω0), где x-перемещение муфты регулятора, m-инерционный коэффициент системы, β-коэффициент сопротивления, c-жесткость пружин регулятора, ω-мгновенная и ω0-средняя угловые скорости машины, A-постоянная. Уравнение движения машины имеет вид J(dω/dt)=-Bx (B-постоянная, J-приведенный момент инерции вращающихся частей двигателя). Установить условия устойчивости системы, состоящей из двигателя и регулятора.
56.1 Двойной маятник, образованный двумя стержнями длины l и материальными точками с массами m, подвешен на горизонтальной оси, вращающейся с постоянной угловой скоростью ω вокруг оси z. Исследовать устойчивость вертикального положения равновесия маятника. Массой стержней пренебречь.
56.2 Тяжелый шарик находится в полости гладкой трубки, изогнутой по эллипсу x^2/a2 + z2/c2=1 и вращающейся вокруг вертикальной оси Oz с постоянной угловой скоростью ω (ось Оz направлена вниз). Определить положения относительного равновесия шарика и исследовать их устойчивость.
56.4 Материальная точка может двигаться по гладкой плоской кривой, вращающейся вокруг вертикальной оси с угловой скоростью ω. Потенциальная энергия П (s) точки задана и зависит только от ее положения, определяемого дугой s, отсчитываемой вдоль привой, r(s)-расстояние точки от оси вращения. Найти условие устойчивости относительного положения равновесия точки.
56.5 Показать, что материальная точка массы m под действием центральной силы притяжения F=ar^n (а=const, r-расстояние точки до притягивающего центра, n n целое число) может совершать движение по окружности с постоянной скоростью. Найти условие, при котором это движение устойчиво по отношению к координате r.
56.6 Твердое тело свободно качается вокруг горизонтальной оси NT, вращающейся вокруг вертикальной оси Oz с угловой скоростью ω. Точка G-центр инерции тела; плоскость NTG является плоскостью симметрии... М-масса тела. Определить возможные положения относительного равновесия и исследовать их устойчивость.
56.8 Вертикальная ось симметрии тонкого однородного круглого диска радиуса r и веса Q может свободно вращаться вокруг точки A. В точке В она удерживается двумя пружинами. Оси пружин горизонтальны и взаимно перпендикулярны, их жесткости соответственно равны с1 и с2, причем с2>С1. Пружины кренятся к оси диска на расстоянии L от нижней опоры; расстояние диска от нижней опоры l. Определить угловую скорость ω, которую нужно сообщить диску для обеспечения устойчивости вращения.
56.10 Материальная точка вынуждена двигаться по внутренней гладкой поверхности тора, заданного параметрическими уравнениями x=ρ cosφ, y=ρ sinφ, z=b sinθ, ρ=a + b cosθ (ось z направлена вертикально вверх). Найти возможные движения точки, характеризующиеся постоянством угла θ, и исследовать их устойчивость.
online-tusa.com
|
SHOP