На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по теоретической механике с решениями
Тело массы m может вращаться вокруг горизонтальной оси O1O2, которая в свою очередь вращается с постоянной угловой скоростью ω вокруг вертикальной оси OC. Центр масс тела G лежит на расстоянии l от точки O3 на прямой, перпендикулярной O1O2. Предполагая, что оси O1O2 и O3G являются главными осями инерции тела в точке O3, составить уравнение движения. Моменты инерции тела относительно главных осей равны A, B, C.


Решение задачи 48.25
(Мещерский И.В.)
<< Предыдущее Следующее >>
48.21 Тонкий диск массы М может своей плоскостью скользить без трения по горизонтальной плоскости. По диску, верхняя поверхность которого шероховата, движется материальная точка массы т: Уравнения относительного движения точки в декартовых координатах x и y, связанных с диском и имеющих начало в его центре масс, заданы в виде x=x(t), y=y(t). Момент инерции диска относительно его центра масс равен J. Определить закон изменения угловой скорости диска. В начальном положении диск неподвижен. 48.22 По диску, описанному в предыдущей задаче, вдоль окружности радиуса R движется материальная точка с относительной скоростью v=at. Найти закон движения диска. 48.32 Решить предыдущую задачу, заменив грузы M1 и М2 катками массы m и радиуса r каждый. Катки считать сплошными однородными круглыми дисками. Коэффициент трения качения катков о наклонные плоскости равен fк, Нити закреплены на осях катков. 48.37 По неподвижной призме A, расположенной под углом α к горизонту, скользит призма В массы m2. К призме B, посредством цилиндрического шарнира O и спиральной пружины с коэффициентом жесткости c, присоединен тонкий однородный стержень OD массы m1 и длины l. Стержень совершает колебания вокруг оси O, перпендикулярной плоскости рисунка. Положения призмы В и стержня OD определены посредством координат s и р. Написать дифференциальные уравнения движения материальной
online-tusa.com | SHOP