На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
Пользуясь результатами, полученными при решении предыдущей
задачи
, составить для канонических переменных Гамильтона дифференциальные уравнения малых колебаний волчка около верхнего вертикального положения.
Решение задачи 49.10
(Мещерский И.В.)
<< Предыдущее
Следующее >>
49.8 Материальная точка массы m подвешена с помощью стержня длины l к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью ω (см. рисунок к задаче 49.4). Составить функцию Гамильтона и канонические уравнения движения. Массу стержня не учитывать.
49.9 Вертикальное положение оси симметрии волчка, вращающегося относительно неподвижной точки O под действием силы тяжести, определяется углами α и β. Исключив циклическую координату φ(угол собственного вращения), составить для углов α и β функции Рауса и Гамильтона. Масса волчка равна m, расстояние от его центра масс до точки O равно l, момент инерции относительно оси симметрии z равен C, а относительно осей x и у равен A.
49.11 Положение оси симметрии z волчка, движущегося относительно неподвижной точки O под действием силы тяжести, определяется углами Эйлера, углом прецессии ψ и углом нутации θ. Составить функцию Гамильтона для углов ψ, θ и φ (угол собственного вращения) и соответствующих импульсов, если m-масса волчка, l-расстояние от его центра масс до точки O, C-момент инерции относительно оси z, A-момент инерции относительно любой оси, лежащей в экваториальной плоскости, проходящей через точку O.
49.12 В условиях предыдущей задачи составить канонические уравнения движения волчка.
online-tusa.com
|
SHOP