Решение задач → Задачи по теоретической механике с решениями
Система, состоящая из двух одинаковых колес радиуса а каждое, могущих независимо вращаться вокруг общей нормальной к ним оси O1O2 длины l, катится по горизонтальном плоскости. Колеса связаны пружиной жесткости c, работающей на кручение (упругий торсион). Масса каждого колеса М; С-момент инерции колеса относительно оси вращения, А-момент инерции колеса относительно диаметра. Составить уравнения движения системы и определить движение, отвечающее начальным условиям φ1=0, φ1'=0, φ2=0, φ2'=ω (φ1, φ2-углы поворота колес). Массой оси пренебречь.
Решение задачи 48.47 (Мещерский И.В.)
<< Предыдущее
|
Следующее >>
|
48.45 Пользуясь результатами, полученными при решении предыдущей задачи, составить дифференциальное уравнение малых колебании цилиндра, если движение началось из состояния покоя и при t=0, ρ=ρ0, φ=φ0
|
48.46 Определить движение системы, состоящей из двух масс m1 и m2, насаженных на гладкий горизонтальный стержень (ось Ох), массы связаны пружиной жесткости с и могут двигаться поступательно вдоль стержня; расстояние между центрами масс при ненапряженной пружине равно l; начальное состояние системы при t=0 определяется следующими значениями скоростей и координат центров масс: x1=0, x1'=u0, x2=l, x2'=0
|
49.1 Трубка AB вращается с постоянной угловой скоростью ω вокруг вертикальной оси CD, составляя с ней угол α. В трубке находится пружина жесткости c, один конец которой укреплен в точке A; ко второму концу пружины прикреплено тело M массы m, скользящее без трения внутри трубки. В недеформированном состоянии длина пружины равна AO=l. Приняв за обобщенную координату расстояние x от тела M до точки O, определить кинетическую энергию T тела M и обобщенный интеграл энергии.
|
49.2 Найти первые интегралы движения сферического маятника длины l, положение которого определяется углами θ и ψ.
|
|