Решение задач → Задачи по теоретической механике с решениями
Исследовать малые свободные колебания груженой платформы веса P, опирающейся в точках A и B на две рессоры одинаковой жесткости k. Центр масс C платформы с грузом находится на прямой AB, причем AC=a и CB=b. Платформа выведена из положения равновесия путем сообщения центру масс начальной скорости v0, направленной вертикально вниз без начального отклонения. Массы рессор и силы трения не учитывать. Момент инерции платформы относительно горизонтальной поперечной оси, проходящей через центр масс платформы, равен JC=0,1(a2+b2)P/g. Колебания происходят в вертикальной плоскости. За обобщенные координаты принять: y-отклонение центра масс от положения равновесия вниз, ψ-угол поворота платформы вокруг центра масс.
Для просмотра изображения в полном размере нажмите на него  |
Решение задачи 55.16 (Мещерский И.В.)
<< Предыдущее
|
Следующее >>
|
55.14 Стержень AB веса P подвешен за концы A и B к потолку на двух одинаковых нерастяжимых нитях длины a. К стержню AB подвешена на двух одинаковых нерастяжимых нитях длины b балка CD веса Q. Предполагая, что колебания происходят в вертикальной плоскости, найти частоты главных колебаний. Массами нитей пренебречь.
|
55.15 Исследовать колебания железнодорожного вагона в его средней вертикальной плоскости, если вес подрессоренной части вагона Q, расстояния центра масс от вертикальных плоскостей, проведенных через оси, l1=l2=l; радиус инерции относительно центральной оси, параллельной осям вагона, ρ; жесткость рессор для обеих осей одинакова: k1=k2=k.
|
55.21 Круглый однородный диск радиуса r и массы M связан шарниром со стержнем OA длины l, могущим поворачиваться около неподвижной горизонтальной оси. На окружности диска закреплена материальная точка B массы m. Определить частоты свободных колебаний системы. Массой стержня пренебречь. Диск может вращаться в плоскости колебаний стержня OA.
|
55.25 К движущейся по заданному закону ξ=ξ(t) платформе подвешена на пружине жесткости c1 механическая система, состоящая из массы m1, к которой жестко присоединен в точке B поршень демпфера. Камера демпфера, масса которого равна m2, опирается на пружину жесткости c2, противоположный конец которой прикреплен к поршню. Вязкое трение в демпфере пропорционально относительной скорости поршня и камеры; ρ-коэффициент сопротивления. Составить уравнения движения системы.
|
|