На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по теоретической механике с решениями
При условиях предыдущей задачи найти уравнения движения вагонов и построить формы главных колебаний для случая вагонов равного веса Q1=Q2=Q3=Q, соединенных сцепками одинаковой жесткости с12=c. В начальный момент два вагона находятся в положении равновесия, а крайний правый вагон отклонен на х0 от положения равновесия.


Решение задачи 55.45
(Мещерский И.В.)
<< Предыдущее Следующее >>
55.42 Бак, имеющий форму куба, опирается четырьмя нижними углами на четыре одинаковые пружины; длина стороны куба 2а. Жесткости пружин в направлении осей, параллельных сторонам куба, равны сх, су, cz; момент инерции куба относительна главных центральных осей J. Составить уравнения малых колебаний и определить их частоты в случае сх=су. Масса бака равна М 55.43 Однородная горизонтальная прямоугольная пластина со сторонами а и b опирается своими углами на четыре одинаковые пружины жесткости c; масса пластины М. Определить частоты свободных колебаний. 55.46 Найти частоты и формы главных колебаний системы, состоящей из трех одинаковых масс m, закрепленных на балке на одинаковых расстояниях друг от друга и от опор. Балку считать свободно положенной на опоры; длина балки l, момент инерции поперечного сечения J, модуль упругости E. 55.47 Система n одинаковых масс m, соединенных пружинами жесткости c, образует механический фильтр для продольных колебаний. Считая заданным закон поступательного движения левой массы x=x0sinωt, показать, что система является фильтром низких частот, т. е. что после перехода частоты ω через определенную границу амплитуды вынужденных колебаний отдельных масс изменяются в зависимости от номера массы по экспоненциальному закону, а до перехода-по гармоническому.
online-tusa.com | SHOP