На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Число записей в разделе: 3236
24.16 Кривошип OA с противовесом B вращается с угловой скоростью ω0=const вокруг оси O неподвижной шестеренки и несет на конце A ось другой шестеренки того же размера, соединенной с цепью. Определить угловую скорость и угловое ускорение подвижной шестеренки, а также скорость и ускорение произвольной ее точки M, если длина кривошипа OA=l.
24.17 В эпициклической передаче ведущая шестерня радиуса R вращается против часовой стрелки с угловой скоростью ω0 и угловым ускорением ε0, кривошип длины 3R вращается вокруг ее оси по часовой стрелке с той же угловой скоростью и тем же угловым ускорением. Наити скорость и ускорение точки M ведомой шестерни радиуса R, лежащей на конце диаметра, перпендикулярного в данный момент кривошипу.
24.18 Даны два конических зубчатых колеса, оси которых неподвижны, а соответственные углы равны α и β. Первое колесо вращается с угловой скоростью ω1. Определить угловую скорость ω2 второго колеса и вычислить ее в том случае, когда α=30°, β=60°, ω1=10 об/мин.
24.19 Карусель представляет собой круглую площадку AB, которая вращается вокруг оси OC, проходящей через ее центр D, делая 6 об/мин, а ось OC вращается в том же направлении вокруг вертикали OE и делает 10 об/мин. Угол между осями α=20°, диаметр площадки AB равен 10 м, расстояние OD равно 2 м. Определить скорость v точки B в тот момент, когда она занимает самое низкое положение.
24.20 Шаровая дробилка состоит из полого шара II (в котором находятся шары и вещество, подвергающееся дроблению), сидящего на оси CD, на которой заклинено коническое зубчатое колесо E радиуса r. Ось CD сидит в подшипниках в раме I, составляющей одно целое с осью AB и приводящейся во вращение при помощи рукоятки G. Колесо E сцепляется с неподвижным колесом F радиуса R. Определить абсолютную угловую скорость шаровой дробилки, если рукоятка вращается с угловой скоростью ω0; угол между осями AB и CD равен α. Определить также абсолютное угловое ускорение шаровой дробилки, если угловая скорость рукоятки ω0=const.
24.21 Для растирания руды применяются бегуны в виде чугунных колес со стальными ободьями, катящимися по дну конической чаши. Бегуны вращаются вокруг горизонтальной оси AOB, которая в свою очередь вращается вокруг вертикальной оси OO1, составляющей с осью AOB одно целое. Найти абсолютные скорости точек D и E обода бегуна, принимая, что мгновенная ось вращения бегуна проходит через середину C линии касания обода бегуна с дном чаши. Скорость вращения вокруг вертикальной оси ωe=1 рад/с, ширина бегуна h=0,5 м. Средний радиус бегуна R=1 м, средний радиус вращения r=0,6 м, tg α=0,2.
24.22 Дифференциальная передача состоит из двух дисков AB и DE, центры которых находятся на их общей оси вращения; эти диски сжимают колесо MN, ось которого HI перпендикулярна оси дисков. Определить для колеса MN скорость v центра H и угловую скорость ωr вращения вокруг оси HI, если скорости точек касания колеса с дисками равны: v1=3 м/с, v2=4 м/с, радиус колеса r=0,05 м.
24.23 Сохранив условия предыдущей задачи и зная длину HI=^1/14 м, определить абсолютную угловую скорость и абсолютное угловое ускорение колеса MN.
24.24 Волчок A вращается относительно своей оси симметрии OB с постоянной угловой скоростью ω1 рад/с. Ось OB описывает равномерно конус. За одну минуту вершина волчка B делает n оборотов; ∠BOS=α. Найти угловую скорость ω и угловое ускорение ε волчка.
24.25 Круглый диск вращается с угловой скоростью ω1 вокруг горизонтальной оси CD; одновременно ось CD вращается вокруг вертикальной оси AB, проходящей через центр O диска, с угловой скоростью ω2. Вычислить величину и направление мгновенной угловой скорости ω и мгновенного углового ускорения ε диска, если ω1=5 рад/с, ω2=3 рад/с.
24.26 Диск радиуса R вращается с постоянной угловой скоростью ωr вокруг горизонтальной оси O1O2, которая в свою очередь вращается с постоянной угловой скоростью ωe вокруг вертикальной оси. Найти скорости и ускорения точек A и B, лежащих на концах вертикального диаметра диска.
24.27 Квадратная рама вращается вокруг оси AB, делая 2 об/мин. Вокруг оси BC, совпадающей с диагональю рамы, вращается диск, делая 2 об/мин. Определить абсолютную угловую скорость и угловое ускорение диска.
24.28 Ось мельничного бегуна OA вращается равномерно вокруг вертикальной оси Oz с угловой скоростью Ω. Длина оси OA=R, радиус бегуна AC=r. Считая, что в данный момент точка C бегуна имеет скорость, равную нулю, определить угловую скорость бегуна ω, направление мгновенной оси, подвижный и неподвижный аксоиды.
24.29 Дифференциальная передача состоит из конического зубчатого колеса III (сателлита), насаженного свободно на кривошип IV, который может вращаться вокруг неподвижной оси CD. Сателлит соединен с коническими зубчатыми колесами I и II, вращающимися вокруг той же оси CD с угловыми скоростями ω1=5 рад/с и ω2=3 рад/с, причем вращения происходят в одну сторону. Радиус сателлита r=2 см, а радиусы колес I и II одинаковы и равны R=7 см. Определить угловую скорость ω4 кривошипа IV, угловую скорость ω34 сателлита по отношению к кривошипу и скорость точки A.
24.30 В дифференциальном механизме, рассмотренном в предыдущей задаче, конические зубчатые колеса I и II вращаются в разные стороны с угловыми скоростями ω1=7 рад/с, ω2=3 рад/с. Определить vA, ω4 и ω34, если R=5 см, r=2,5 см.
24.31 При движении автомобиля по закругленному пути внешние колеса автомобиля, проходя больший путь, должны вращаться быстрее внутренних колес, проходящих меньший путь. Во избежание поломки задней ведущей оси автомобиля применяется зубчатая передача, называемая дифференциальной и имеющая следующее устройство. Задняя ось, несущая два колеса, делается из двух отдельных частей I и II, на концах которых наглухо насажены два одинаковых зубчатых колеса A и B. На этих частях вала в подшипниках вращается коробка C с коническим колесом D, наглухо с ней соединенным. Коробка получает вращение от главного (продольного) вала, приводимого в движение мотором, через посредство зубчатки E. Вращение коробки C передается зубчатым колесам A и B при помощи двух конических шестеренок F (сателлитов), свободно вращающихся вокруг осей, укрепленных в коробке перпендикулярно к задней оси I-II автомобиля. Найти угловые скорости задних колес автомобиля в зависимости от угловой скорости вращения коробки C и угловую скорость ωr сателлитов по отношению к коробке, если автомобиль движется со скоростью v=36 км/ч по закруглению среднего радиуса ρ=5 м; радиусы колес задней оси R=0,5 м; расстояние между ними l=2 м. Радиусы зубчатых колес A и B вдвое больше радиусов сателлитов: R0=2r.
24.32 При применении дифференциального зацепления для получения назначенного отношения чисел оборотов осей AB и MN к коническим колесам I и II дифференциального зацепления присоединяют наглухо цилиндрические зубчатые колеса I' и II'', которые сцепляются с шестеренками IV и V, насаженными наглухо на ось AB. Найти соотношение между угловыми скоростями ω0 и ω валов AB и MN, если радиусы колес I и II одинаковы, числа зубцов колес I', II'', IV и V соответственно равны m, n, x, y.
24.33 В дифференциальной передаче, рассмотренной в предыдущей задаче, между зубчатыми колесами I' и IV введено паразитное колесо с неподвижной осью вращения. Требуется найти соотношение между угловыми скоростями ω0 и ω валов AB и MN, сохраняя все остальные условия задачи.
24.34 Дифференциальная передача, соединяющая обе половины задней оси автомобиля, состоит из двух шестеренок с одинаковыми радиусами R=6 см, насаженных на полуоси, вращающиеся при движении автомобиля на повороте с разными, но постоянными по величине угловыми скоростями ω1=6 рад/с и ω2=4 рад/с одинакового направления. Между шестеренками зажат бегущий сателлит радиуса r=3 см, свободно насаженный на ось. Ось сателлита жестко заделана в кожухе и может вращаться вместе с ним вокруг задней оси автомобиля. Найти относительно корпуса автомобиля ускорения четырех точек M1, M2, M3 и M4 сателлита, лежащих на концах двух диаметров, как показано на рисунке.
24.35 В дифференциале зуборезного станка ускорительное колесо 4 сидит на ведущем валу a свободно, вместе со скрепленным с ним жестко колесом 1. На конце ведущего вала a сидит головка, несущая ось CC сателлитов 2-2. Определить угловую скорость ведомого вала b с наглухо заклиненным колесом 3 в пяти случаях: 1) Угловая скорость ведущего вала ωa, угловая скорость ускорительного колеса ω4=0. 2) Угловая скорость ведущего вала ωa, ускорительное колесо вращается в ту же сторону, что и ведущий вал, с угловой скоростью ω4. 3) Ускорительное колесо и ведущий вал вращаются в одну и ту же сторону с равными угловыми скоростями ω4=ωa. 4) Ускорительное колесо и ведущий вал вращаются в одну и ту же сторону, причем ω4=2ωa. 5) Угловая скорость ведущего вала ωa, ускорительное колесо вращается в противоположную сторону с угловой скоростью ω4.
24.36 В дифференциале зуборезного станка, описанном в предыдущей задаче, угловая скорость ведущего вала ωa=60 об/мин. Определить, какова должна быть угловая скорость ускорительного колеса, чтобы ведомый вал был неподвижен.
24.37 В дифференциале зуборезного станка ускорительное колесо 4 несет на себе ось сателлитов. Угловая скорость ведущего вала ωa. Определить угловую скорость ведомого вала в следующих трех случаях: 1) Ускорительное колесо 4 вращается в сторону ведущего вала с угловой скоростью ω4=ωa. 2) То же, но вращения ведущего вала и ускорительного колеса противоположны по направлению. 3) Ускорительное колесо и ось сателлитов неподвижны.
24.38 В станочном дифференциале коническое колесо 1 заклинено на ведущем валу a, на конце ведомого вала b сидит головка, несущая ось CC сателлитов 2-2. На том же валу свободно сидит коническое колесо 3, составляющее одно целое с червячным колесом 4. Определить передаточное число при неподвижном червяке 5, а следовательно, и колесах 4 и 3, если все конические колеса одного радиуса.
24.39 Двойной дифференциал состоит из кривошипа III, который может вращаться вокруг неподвижной оси ab. На кривошип свободно насажен сателлит IV, состоящий из двух наглухо скрепленных между собой конических зубчатых колес радиусов r1=5 см и r2=2 см. Колеса эти соединены с двумя коническими зубчатыми колесами I и II радиусов R1=10 см и R2=5 см, вращающимися вокруг оси ab, но с кривошипом не связанными. Угловые скорости колес I и II соответственно равны: ω1=4,5 рад/с и ω2=9 рад/с. Определить угловую скорость кривошипа ω3 и угловую скорость сателлита по отношению к кривошипу ω43, если оба колеса вращаются в одну и ту же сторону.
24.40 Решить предыдущую задачу, предполагая, что зубчатые колеса I и II вращаются в противоположные стороны.
online-tusa.com
|
SHOP