На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Число записей в разделе: 3236
22.14 Шары центробежного регулятора Уатта, вращающегося вокруг вертикальной оси с угловой скоростью ω=10 рад/с, благодаря изменению нагрузки машины отходят от этой оси, имея для своих стержней в данном положении угловую скорость ω1=1,2 рад/с. Найти абсолютную скорость шаров регулятора в рассматриваемый момент, если длина стержней l=0,5 м, расстояние между осями их подвеса 2e=0,1 м, углы, образованные стержнями с осью регулятора, α1=α2=α=30°.
22.15 В гидравлической турбине вода из направляющего аппарата попадает во вращающееся рабочее колесо, лопатки которого поставлены, во избежание входа воды с ударом, так, чтобы относительная скорость vr касалась лопатки. Найти относительную скорость частицы воды на наружном ободе колеса (в момент входа), если ее абсолютная скорость при входе v=15 м/с, угол между абсолютной скоростью и радиусом α=60°, радиус входа R=2 м, угловая скорость колеса равна π рад/с.
22.16 Частицы воды входят в турбину со скоростью u. Угол между скоростью u и касательной к ротору, проведенной в точке входа частицы, равен α. Внешний диаметр ротора D, его число оборотов в минуту n. Определить угол между лопаткой ротора и касательной в точке входа воды, при котором вода будет входить без удара (относительная скорость частиц в этом случае должна быть направлена вдоль лопаток).
22.17 В кулисном механизме при качании кривошипа OC вокруг оси O, перпендикулярной плоскости рисунка, ползун A, перемещаясь вдоль кривошипа OC, приводит в движение стержень AB, движущийся в вертикальных направляющих K. Расстояние OK=l. Определить скорость движения ползуна A относительно кровошипа OC в функции от угловой скорости ω и угла поворота φ кривошипа.
22.18 Найти абсолютную скорость какой-либо точки M спарника AB, соединяющего кривошипы OA и O1B осей O и O1, если радиусы колес одинаковы: R=1 м; радиусы кривошипов: OA=O1B=0,5 м. Скорость экипажа v0=20 м/с. Скорость точки M определить для четырех моментов, когда кривошипы OA и O1B либо вертикальны, либо горизонтальны. Колеса катятся по рельсам без скольжения.
22.19 Колеса A и B вагона, движущегося со скоростью v по прямолинейному рельсу, катятся по нему без скольжения. Радиусы колес равны r, и расстояние между осями d. Определить скорость центра колеса A относительно системы координат, неизменно связанной с колесом B.
22.20 Механизм состоит из двух параллельных валов O и O1, кривошипа OA и кулисы O1B; конец A кривошипа OA скользит вдоль прорези в кулисе O1B; расстояние между осями валов OO1 равно a; длина кривошипа OA равна l, причем l>a. Вал O вращается с постоянной угловой скоростью ω. Найти: 1) угловую скорость ω1 вала O1 и относительную скорость точки A по отношению к кулисе O1B, выразив их через переменную величину O1A=s; 2) наибольшие и наименьшие значения этих величин; 3) те положения кривошипа, при которых ω1=ω.
22.21 Камень A качающейся кулисы механизма строгального станка приводится в движение зубчатой передачей, состоящей из зубчатки D и зубчатки E, несущей на себе ось камня A в виде пальца. Радиусы зубчаток R=0,1 м, R1=0,35 м, O1A=0,3 м, расстояние между осью O1 зубчатки E и центром B качания кулисы O1B=0,7 м. Определить угловую скорость кулисы в моменты, когда отрезок O1A либо вертикален (верхнее и нижнее положения), либо перпендикулярен кулисе AB (левое и правое положения), если зубчатка имеет угловую скорость ω=7 рад/с. Точки O1 и B расположены на одной вертикали.
22.22 Определить угловую скорость вращающейся кулисы кривошипно-кулисного механизма при четырех положениях кривошипа-двух вертикальных и двух горизонтальных, если a=60 см, l=80 см и угловая скорость кривошипа равна π рад/с. (См. рисунок к задаче 22.20.)
22.23 Определить абсолютную скорость поршня ротативного двигателя при двух вертикальных и двух горизонтальных положениях шатуна AB, если длина кривошипа OA=r=0,24 м, угловая скорость цилиндра с картером равна 40π рад/с. (См. рисунок к задаче 21.14.)
22.24 Восточная, северная и вертикальная составляющие скорости точки M относительно Земли соответственно равны vE, vN, vh. Высота точки над поверхностью Земли в данный момент равна h, широта места φ. Радиус Земли R, ее угловая скорость ω. Определить составляющие абсолютной скорости точки.
22.25 В кривошипно-кулисном механизме с поступательно движущейся кулисой BC кривошип OA (расположенный позади кулисы) длины l=0,2 м вращается с постоянной угловой скоростью, равной Зπ рад/с. Концом A, соединенным шарнирно с камнем, скользящим в прорези кулисы, он сообщает кулисе BC возвратно-поступательное движение. Определить скорость v кулисы в момент, когда кривошип образует с осью кулисы угол 30°.
22.26 Стержень скользит в вертикальных направляющих, опираясь нижним концом с помощью ролика на поверхность полуцилиндра радиуса r. Полуцилиндр движется по горизонтали вправо с постоянной скоростью v0. Радиус ролика ρ. Определить скорость стержня, если в начальный момент он находился в наивысшем положении.
22.27 На токарном станке обтачивается цилиндр диаметра d=80 мм. Шпиндель делает n=30 об/мин. Скорость продольной подачи v=0,2 мм/с. Определить скорость vr резца относительно обрабатываемого цилиндра.
23.1 Наклонная плоскость AB, составляющая угол 45° с горизонтом, движется прямолинейно параллельно оси Ox с постоянным ускорением 0,1 м/с^2. По этой плоскости спускается тело P с постоянным относительным ускорением 0,1√2 м/с2; начальные скорости плоскости и тела равны нулю, начальное положение тела определяется координатами x=0, y=h. Определить траекторию, скорость и ускорение абсолютного движения тела.
23.2 Велосипедист на некотором участке горизонтального прямолинейного пути движется по закону s=0,1t^2 (s-в метрах, t-в секундах). Дано: R=0,35 м, l=0,18 м, z1=18 зубцов, z2=48 зубцов. Определить абсолютное ускорение осей M и N велосипедных педалей (предполагая, что колеса катятся без скольжения) при t=10 c, если в этот момент кривошип MN расположен вертикально.
23.3 Определить абсолютное ускорение какой-нибудь точки M спарника AB, соединяющего кривошипы осей O и O1, если экипаж движется по прямолинейному участку пути равномерно со скоростью v0=10 м/с. Радиусы колес R=1 м, радиусы кривошипов r=0,75 м. (См. рисунок к задаче 22.18.)
23.4 Найти скорости и ускорения точек M1, M2, M3 и M4 гусеницы трактора, движущегося без скольжения по прямолинейному участку пути со скоростью v0 и ускорением w0; радиусы колес трактора равны R; скольжением гусеницы по ободу колес пренебречь.
23.5 На тележке, движущейся по горизонтали вправо с ускорением w=0,492 м/с^2, установлен электрический мотор, ротор которого при пуске в ход вращается согласно уравнению φ=t2, причем угол φ измеряется в радианах. Радиус ротора равен 0,2 м. Определить абсолютное ускорение точки A, лежащей на ободе ротора, при t=1 c, если в этот момент точка A находится в положении, указанном на рисунке.
23.6 Определить в предыдущей задаче угловую скорость равномерного вращения ротора, при которой точка A, находясь в положении B, имеет абсолютное ускорение, равное нулю.
23.7 К валу электромотора, вращающегося согласно уравнению φ=ωt (ω=const), прикреплен под прямым углом стержень OA длины l; при этом электромотор, установленный без креплений, совершает горизонтальные гармонические колебания на фундаменте по закону x=a sin ωt. Определить абсолютное ускорение точки A в момент времени t=^π/2ω c.
23.8 Тележка, на которой установлен мотор, движется по горизонтали вправо с постоянным ускорением w=0,4 м/с^2. Мотор вращается по закону φ=1/2 t2. Определить абсолютное ускорение в момент t=1 с четырех точек M1, M2, M3, M4 ротора, отстоящих от оси ротора на расстоянии l=0,2√2 м и занимающих в этот момент положение, указанное на рисунке.
23.9 Автомобиль на прямолинейном участке пути движется с ускорением w0=2 м/с^2. На продольный вал насажен вращающийся маховичок радиуса R=0,25 м, имеющий в данный момент угловую скорость ω=4 рад/с и угловое ускорение ε=4 рад/с2. Найти абсолютное ускорение точек обода маховичка в данный момент.
23.10 Самолет движется прямолинейно с ускорением w0=const=4 м/с, винт диаметра d=1,8 м вращается равномерно с угловой скоростью равной 60π рад/с. Найти уравнения движения, скорость и ускорение конца винта в системе координат, неподвижной относительно Земли, причем ось Ox этой системы координат совпадает с осью винта. Начальная скорость самолета v0=0.
23.11 В регуляторе, вращающемся вокруг вертикальной оси с постоянной угловой скоростью ω=6π ^рад/с, тяжелые гири A, прикрепленные к концам пружины, совершают гармонические колебания вдоль паза MN таким образом, что расстояние их центров тяжести от оси вращения изменяется по закону x=(0,1+0,05 sin 8πt) м. Определить ускорение центра тяжести гири в момент, когда кориолисово ускорение достигает максимального значения, и указать значение кориолисова ускорения при крайних положениях гири.
online-tusa.com
|
SHOP