На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Число записей в разделе: 3236
35.14 На рисунке изображена крановая тележка A массы M1, которая заторможена посередине балки BD. В центре масс C1 тележки подвешен трос длины l с привязанным к нему грузом C2 массы M2. Трос с грузом совершает гармонические колебания в вертикальной плоскости. Определить: 1) суммарную вертикальную реакцию балки BD, считая ее жесткой; 2) закон движения точки C1 в вертикальном направлении, считая балку упругой с коэффициентом упругости, равным c. В начальный момент балка, будучи недеформированной, находилась в покое в горизонтальном положении. Считая колебания троса малыми, принять: sin φ≈φ, cos φ≈1. Начало отсчета оси y взять в положении статического равновесия точки C1. Массой троса и размерами тележки по сравнению с длиной балки пренебречь.
35.15 Сохранив данные предыдущей задачи и считая балку BD жесткой, определить: 1) суммарную горизонтальную реакцию рельсов; 2) в предположении, что тележка не заторможена, закон движения центра масс C1 тележки A вдоль оси x. В начальный момент точка C1 находилась в покое в начале отсчета оси x. Трос совершает колебания по закону φ=φ0 cos ωt.
35.16 На средней скамейке лодки, находившейся в покое, сидели два человека. Один из них, массы M1=50 кг, переместился вправо на нос лодки. В каком направлении и на какое расстояние должен переместиться второй человек массы M2=70 кг для того, чтобы лодка осталась в покое? Длина лодки 4 м. Сопротивлением воды движению лодки пренебречь.
35.17 На однородную призму A, лежащую на горизонтальной плоскости, положена однородная призма B; поперечные сечения призм-прямоугольные треугольники, масса призмы A втрое больше массы призмы B. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину l, на которую передвинется призма A, когда призма B, спускаясь по A, дойдет до горизонтальной плоскости.
35.18 По горизонтальной товарной платформе длины 6 м и массы 2700 кг, находившейся в начальный момент в покое, двое рабочих перекатывают тяжелую отливку из левого конца платформы в правый. В какую сторону и насколько переместится при этом платформа, если общая масса груза и рабочих равна 1800 кг? Силами сопротивления движению платформы пренебречь.
35.19 Два груза M1 и M2, соответственно массы M1 и M2, соединенные нерастяжимой нитью, переброшенной через блок A, скользят по гладким боковым сторонам прямоугольного клина, опирающегося основанием BC на гладкую горизонтальную плоскость. Найти перемещение клина по горизонтальной плоскости при опускании груза M1 на высоту h=10 см. Масса клина M=4M1=16M2; массой нити и блока пренебречь.
35.20 Три груза массы M1=20 кг, M2=15 кг и M3=10 кг соединены нерастяжимой нитью, переброшенной через неподвижные блоки L и N. При опускании груза M1 вниз груз M2 перемещается по верхнему основанию четырехугольной усеченной пирамиды ABCD массы M=100 кг вправо, а груз M3 поднимается по боковой грани AB вверх. Пренебрегая трением между усеченной пирамидой ABCD и полом, определить перемещение усеченной пирамиды ABCD относительно пола, если груз M1 опустится вниз на 1 м. Массой нити пренебречь.
35.21 Подвижной поворотный кран для ремонта уличной электросети установлен на автомашине массы 1 т. Люлька K крана, укрепленная на стержне L, может поворачиваться вокруг горизонтальной оси O, перпендикулярной плоскости рисунка. В начальный момент кран, занимавший горизонтальное положение, и автомашина находились в покое. Определить перемещение незаторможенной автомашины, если кран повернулся на 60°. Масса однородного стержня L длины 3 м равна 100 кг, а люльки K-200 кг. Центр масс C люльки K отстоит от оси O на расстоянии OC=3,5 м. Сопротивлением движению пренебречь.
36.1 Определить главный вектор количеств движения работающего редуктора скоростей, изображенного на рисунке, если центры тяжести каждого из четырех вращающихся зубчатых колес лежат на осях вращения.
36.2 Определить сумму импульсов внешних сил, приложенных к редуктору, рассмотренному в предыдущей задаче, за произвольный конечный промежуток времени.
36.3 Определить главный вектор количеств движения маятника, состоящего из однородного стержня OA массы M1, длины 4r и однородного диска B массы M2, радиуса r, если угловая скорость маятника в данный момент равна ω.
36.4 Определить модуль и направление главного вектора количеств движения механизма эллипсографа, если масса кривошипа равна M1, масса линейки AB эллипсографа равна 2M1, масса каждой из муфт A и B равна M2; даны размеры: OC=AC=CB=l. Центры масс кривошипа и линейки расположены в их серединах. Кривошип вращается с угловой скоростью ω.
36.5 Определить главный вектор количеств движения центробежного регулятора, ускоренно вращающегося вокруг вертикальной оси. При этом углы φ изменяются по закону φ=φ(t) и верхние стержни, поворачиваясь, поднимают шары A и B. Длины стержней: OA=OB=AD=BD=l. Центр масс муфты D массы M2 лежит на оси z. Шары A и B считать точечными массами массы M1 каждый. Массой стержней пренебречь.
36.6 В механизме, изображенном на рисунке, движущееся колесо радиуса r имеет массу M, причем центр масс колеса находится в точке O1; центр масс прямолинейного стержня AB массы kM находится в его середине. Кривошип OO1 вращается вокруг оси O с постоянной угловой скоростью ω. Определить главный вектор количеств движения системы, пренебрегая массой кривошипа.
36.7 Масса ствола орудия равна 11 т. Масса снаряда равна 54 кг. Скорость снаряда у дульного среза v0=900 м/с. Определить скорость свободного отката ствола орудия в момент вылета снаряда.
36.8 Граната массы 12 кг, летевшая со скоростью 15 м/с, разорвалась в воздухе на две части. Скорость осколка массы 8 кг возросла в направлении движения до 25 м/с. Определить скорость второго осколка.
36.9 По горизонтальной платформе A, движущейся по инерции со скоростью v0, перемещается тележка B с постоянной относительной скоростью u0. В некоторый момент времени тележка была заторможена. Определить общую скорость v платформы с тележкой после ее остановки, если M-масса платформы, а m-масса тележки.
36.10 Сохранив условие предыдущей задачи, определить путь s, который пройдет тележка B по платформе A с момента начала торможения до полной остановки, и время торможения τ, если считать, что при торможении возникает постоянная по величине сила сопротивления F. Указание. В дифференциальном уравнении движения тележки использовать соотношение Mv+m(u+v)=const, где u и v-переменные скорости.
36.11 Из наконечника пожарного рукава с поперечным сечением 16 см^2 бьет струя воды под углом α=30° к горизонту со скоростью 8 м/с. Определить силу давления струи на вертикальную стену, пренебрегая действием силы тяжести на форму струи и считая, что частицы жидкости после встречи со стеною приобретут скорости, направленные вдоль стены.
36.12 Определить горизонтальную составляющую N возникающей при движении воды силы давления на опору колена трубы диаметра d=300 мм, по которой течет вода со скоростью v=2 м/с.
36.13 Вода входит в неподвижный канал переменного сечения, симметричный относительно вертикальной плоскости, со скоростью v0=2 м/с под углом α0=90° к горизонту; сечение канала при входе 0,02 м^2; скорость воды у выхода из канала v1=4 м/с и направлена под углом α1=30° к горизонту. Определить модуль горизонтальной составляющей силы, с которой вода действует на стенки канала.
36.14 Определить модуль горизонтальной составляющей силы давления струи воды на неподвижную лопатку турбинного колеса, если объемный расход воды Q, плотность γ, скорость подачи воды на лопатку v1 горизонтальна, скорость схода воды v2 образует угол α с горизонтом.
37.1 Однородный круглый диск массы M=50 кг и радиуса R=30 см катится без скольжения по горизонтальной плоскости, делая вокруг своей оси 60 об/мин. Вычислить главный момент количеств движения диска относительно осей: 1) проходящей через центр диска перпендикулярно плоскости движения; 2) относительно мгновенной оси.
37.2 Вычислить главный момент количеств движения линейки AB эллипсографа в абсолютном движении относительно оси z, совпадающей с осью вращения кривошипа OC, а также в относительном движении по отношению к оси, проходящей через центр масс C линейки параллельно оси z. Кривошип вращается с угловой скоростью, проекция которой на ось z равна ωz; масса линейки равна m; OC=AC=BC=l (см. рисунок к задаче 34.5).
37.3 Вычислить главный момент количеств движения планетарной передачи относительно неподвижной оси z, совпадающей с осью вращения кривошипа OC3. Неподвижное колесо 1 и подвижное колесо 3-одинакового радиуса r. Масса колеса 3 равна m. Колесо 2 массы m2 имеет радиус r2. Кривошип вращается с угловой скоростью, проекция которой на ось z равна ωz. Массой кривошипа пренебречь. Колеса считать однородными дисками.
online-tusa.com
|
SHOP