На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по теоретической механике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

Число записей в разделе: 3236

39.17 Однородный стержень AB массы M подвешен в точке O на двух нитях равной с ним длины. Определить натяжение одной из нитей в момент обрыва другой. (См. указание к задаче 39.16.)

39.18 Однородный тонкий стержень длины 2l и массы M лежит на двух опорах A и B; центр масс C стержня находится на одинаковых расстояниях от опор, причем CA=CB=a; давление на каждую опору равно 1/2 P. Как изменится давление на опору A в тот момент, когда опора B будет мгновенно удалена? (См. указание к задаче 39.16.)

39.19 Тяжелый круглый цилиндр A массы m обмотан посредине тонкой нитью, конец которой B закреплен неподвижно. Цилиндр падает без начальной скорости, разматывая нить. Определить скорость оси цилиндра, после того как эта ось опустится на высоту h, и найти натяжение T нити.

39.20 Две гибкие нити обмотаны вокруг однородного круглого цилиндра массы M и радиуса r так, что завитки их расположены симметрично относительно средней плоскости, параллельной основаниям. Цилиндр помещен на наклонной плоскости AB так, что его образующие перпендикулярны линии наибольшего ската, а концы C нитей закреплены симметрично относительно вышеуказанной средней плоскости на расстоянии 2r от плоскости AB. Цилиндр начинает двигаться без начальной скорости под действием силы тяжести, преодолевая трение о наклонную плоскость, причем коэффициент трения равен f. Определить путь s, пройденный центром масс цилиндра за время t, и натяжение T нитей, предполагая, что в течение рассматриваемого промежутка времени ни одна из нитей не сматывается до конца.

39.21 Два цилиндрических вала массы M1 и M2 скатываются по двум наклонным плоскостям, образующим соответственно углы α и β с горизонтом. Валы соединены нерастяжимой нитью, концы которой намотаны на валы и к ним прикреплены. Определить натяжение нити и ее ускорение при движении по наклонным плоскостям. Валы считать однородными круглыми цилиндрами. Массой нити пренебречь.

39.22 Определить период малых колебаний однородного полукруглого диска радиуса R, находящегося на негладкой горизонтальной плоскости, по которой он может катиться без скольжения.

40.1 Волчок вращается по часовой стрелке вокруг своей оси OA с постоянной угловой скоростью ω=600 рад/с; ось OA наклонена к вертикали; нижний конец оси O остается неподвижным; центр масс C волчка находится на оси OA на расстоянии OC=30 см от точки O; радиус инерции волчка относительно оси равен 10 см. Определить движение оси волчка OA, считая, что главный момент количеств движения волчка относительно оси OA равен Jω.

40.2 Волчок, имея форму диска диаметра 30 см, вращается с угловой скоростью 80 рад/с вокруг своей оси симметрии. Диск насажен на ось длины 20 см, расположенную вдоль оси симметрии волчка. Определить угловую скорость регулярной прецессии волчка, полагая, что его главный момент количеств движения равен Jω.

40.3 Турбина, вал которой параллелен продольной оси судна, делает 1500 об/мин. Масса вращающихся частей 6 т, радиус инерции ρ=0,7 м. Определить гироскопические давления на подшипники, если судно описывает циркуляцию вокруг вертикальной оси, поворачиваясь на 10° в секунду. Расстояние между подшипниками l=2,7 м.

40.4 Определить максимальные гироскопические давления на подшипники быстроходной турбины, установленной на корабле. Корабль подвержен килевой качке с амплитудой 9° и периодом 15 с вокруг оси, перпендикулярной оси ротора. Ротор турбины массы 3500 кг с радиусом инерции 0,6 м делает 3000 об/мин. Расстояние между подшипниками 2 м.

40.5 Определить время T полного оборота оси симметрии артиллерийского снаряда вокруг касательной к траектории центра масс снаряда. Это движение происходит в связи с действием силы сопротивления воздуха F=6,72 кН, приближенно направленной параллельно касательной и приложенной к оси снаряда на расстоянии h=0,2 м от центра масс снаряда. Момент количества движения снаряда относительно его оси симметрии равен 1850 кг*м^2/с.

40.6 Газотурбовоз приводится в движение турбиной, ось которой параллельна оси колес и вращается в ту же сторону, что и колеса, делая 1500 об/мин. Момент инерции вращающихся частей турбины относительно оси вращения J=200 кг*м^2. Как велика добавочная сила давления на рельсы, если газотурбовоз идет по закруглению радиуса 250 м со скоростью 15 м/с? Ширина колеи 1,5 м.

40.7 В дробилке с бегунами каждый бегун имеет массу M=1200 кг, радиус инерции относительно его оси ρ=0,4 м, радиус R=0,5 м, мгновенная ось вращения бегуна проходит через середину линии касания бегуна с дном чаши. Определить силу давления бегуна на горизонтальное дно чаши, если переносная угловая скорость вращения бегуна вокруг вертикальной оси соответствует n=60 об/мин.

40.8 Колесный скат массы M=1400 кг, радиуса a=75 см и с радиусом инерции относительно своей оси ρ=√0,55 a движется равномерно со скоростью v=20 м/с по закруглению радиуса R=200 м, лежащему в горизонтальной плоскости. Определить силу давления ската на рельсы, если расстояние между рельсами l=1,5 м.

40.9 На рисунке изображен узел поворотной части разводного моста. Вал AB с шарнирно прикрепленными к нему под углом α стержнями CD и CE вращается с угловой скоростью ω0. При этом конические шестерни K и L, свободно насаженные на стержни CD и CE, катятся без скольжения по неподвижной плоской горизонтальной шестерне. Определить силу дополнительного динамического давления шестерен K и L массы M каждая на неподвижную горизонтальную шестерню, если радиусы всех шестерен равны r. Подвижные шестерни считать сплошными однородными дисками.

40.10 Квадратная рама со стороной a=20 см вращается вокруг вертикальной оси AB с угловой скоростью ω1=2 рад/с. Вокруг оси ED, совмещенной с диагональю рамы, вращается диск M радиуса r=10 см с угловой скоростью ω=300 рад/с. Определить отношение дополнительных сил бокового давления на опоры A и B к соответствующим статическим давлениям. Массой рамы пренебречь. Массу диска считать равномерно распределенной по ободу.

40.11 Колесо радиуса a и массы 2M вращается вокруг горизонтальной оси AB с постоянной угловой скоростью ω1; ось AB вращается вокруг вертикальной оси OD, проходящей через центр колеса, с постоянной угловой скоростью ω2; направления вращений показаны стрелками. Найти силы давления NA и NB на подшипники A и B, если AO=OB=h; масса колеса равномерно распределена по его ободу.

40.12 Простейший гиротахометр состоит из гироскопа, рамка которого соединена двумя пружинами, прикрепленными к корпусу прибора. Момент инерции гироскопа относительно оси собственного вращения равен J, угловая скорость гироскопа равна ω. Определить угол α, на который повернется ось гироскопа вместе с его рамкой, если прибор установлен на платформе, вращающейся с угловой скоростью ω1 вокруг оси x, перпендикулярной оси y вращения рамки. Коэффициенты жесткости пружин равны c; угол α считать малым; расстояние от оси вращения рамки до пружин равно a.

41.1 Определить силу тяжести, действующую на круглый однородный диск радиуса 20 см, вращающийся вокруг оси по закону φ=Зt^2. Ось проходит через центр диска перпендикулярно его плоскости; главный момент сил инерции диска относительно оси вращения равен 4 Н*см.

41.2 Тонкий прямолинейный однородный стержень длины l и массы M вращается вокруг оси, проходящей перпендикулярно стержню через его конец, по закону φ=at^2. Найти величины и направления равнодействующих Jn и Jτ центробежных и вращательных сил инерции частиц стержня.

41.3 Колесо массы M и радиуса r катится без скольжения по прямолинейному горизонтальному рельсу. Определить главный вектор и главный момент сил инерции относительно оси, проходящей через центр масс колеса перпендикулярно плоскости движения. Колесо считать сплошным однородным диском. Центр масс C движется по закону xC=at^2/2, где a-постоянная положительная величина. Ось x направлена вдоль рельса.

41.4 Определить главный вектор и главный момент сил инерции подвижного колеса II планетарного механизма относительно оси, проходящей через его центр масс C перпендикулярно плоскости движения. Кривошип OC вращается с постоянной угловой скоростью ω. Масса колеса II равна M. Радиусы колес равны r.

41.5 Конец A однородного тонкого стержня AB длины 2l и массы M перемещается по горизонтальной направляющей с помощью упора E с постоянной скоростью v, причем стержень все время опирается на угол D. Определить главный вектор и главный момент сил инерции стержня относительно оси, проходящей через центр масс C стержня перпендикулярно плоскости движения, в зависимости от угла φ.

41.6 По данным предыдущей задачи определить динамическое давление ND стержня на угол D.

41.7 Для экспериментального определения замедления троллейбуса применяется жидкостный акселерометр, состоящий из изогнутой трубки, наполненной маслом и расположенной в вертикальной плоскости. Определить величину замедления троллейбуса при торможении, если при этом уровень жидкости в конце трубки, расположенном в направлении движения, повышается до величины h2, а в противоположном конце понижается до h1. Положение акселерометра указано на рисунке: α1=α2=45°, h1=25 мм, h2=75 мм.

online-tusa.com | SHOP