На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Число записей в разделе: 3236
55.35 Двухъярусная шарнирно-стержневая система удерживается в вертикальном положении тремя пружинами, как это показано на рисунке. Стержни абсолютна жесткие, однородные: вес на длину l равен G. Полагая коэффициенты жесткости пружин равными c1=с2=^10G/l, определить устойчивость равновесия системы, а также частоты и формы f1 и f2 главных колебаний системы. Массой пружин пренебречь: l1=l2=l.
55.36 Груз массы М укреплен на вершине стойки, жестко связанной с балкой AB, свободно лежащей на двух опорах. Полагая, что момент инерции поперечного сечения J, а модули упругости E балки и стоики одинаковы, определить частоты главных изгибных колебаний системы. Массами балки и стойки пренебречь.
55.37 Фундамент машины массы m1=102*10^2 кг, установленный на упругом грунте, совершает вертикальные вынужденные колебания под действием вертикальной возмущающей силы, меняющейся по закону F=98 sin ωt кН. С целью устранения резонансных колебаний, обнаруживающихся при угловой скорости вала машины ω=100 рад/с, на фундаменте установлен на упругих пружинах гаситель в виде тяжелой рамы. Подобрать массу рамы m и суммарную жесткость пружин с2 гасителя так, чтобы амплитуда вынужденных колебаний фундамента при вышеуказанной скорости вала обратилась в нуль, а амплитуда колебаний гасителя не превосходила А=2 мм.
55.39 Электромотор веса Q1 закреплен на упругом бетонном фундаменте (в виде сплошного параллелепипеда) веса Q2 с коэффициентом жесткости с2, установленном на жестком грунте. Ротор веса Р насажен на упругий горизонтальный вал с коэффициентом жесткости при изгибе c1; эксцентриситет ротора относительно вала r; угловая скорость вала ω. Определить вынужденные вертикальные колебания статора электромотора. Учесть влияние массы фундамента путем присоединения одной трети его массы к массе статора.
55.40 В точке А балки AB (см. задачу 55.14) приложена сила F=F0 sin pt (Fо и p-постоянные), составляющая все время с нитью OA прямой угол и расположенная в плоскости движения балки. Какова должна быть длина b нитей, на которых подвешена балка CD, чтобы амплитуда вынужденных колебаний балки AB равнялась нулю?
55.42 Бак, имеющий форму куба, опирается четырьмя нижними углами на четыре одинаковые пружины; длина стороны куба 2а. Жесткости пружин в направлении осей, параллельных сторонам куба, равны сх, су, cz; момент инерции куба относительна главных центральных осей J. Составить уравнения малых колебаний и определить их частоты в случае сх=су. Масса бака равна М
55.43 Однородная горизонтальная прямоугольная пластина со сторонами а и b опирается своими углами на четыре одинаковые пружины жесткости c; масса пластины М. Определить частоты свободных колебаний.
55.45 При условиях предыдущей задачи найти уравнения движения вагонов и построить формы главных колебаний для случая вагонов равного веса Q1=Q2=Q3=Q, соединенных сцепками одинаковой жесткости с1=с2=c. В начальный момент два вагона находятся в положении равновесия, а крайний правый вагон отклонен на х0 от положения равновесия.
55.46 Найти частоты и формы главных колебаний системы, состоящей из трех одинаковых масс m, закрепленных на балке на одинаковых расстояниях друг от друга и от опор. Балку считать свободно положенной на опоры; длина балки l, момент инерции поперечного сечения J, модуль упругости E.
55.47 Система n одинаковых масс m, соединенных пружинами жесткости c, образует механический фильтр для продольных колебаний. Считая заданным закон поступательного движения левой массы x=x0sinωt, показать, что система является фильтром низких частот, т. е. что после перехода частоты ω через определенную границу амплитуды вынужденных колебаний отдельных масс изменяются в зависимости от номера массы по экспоненциальному закону, а до перехода-по гармоническому.
55.48 Фильтр крутильных колебаний схематизируется в виде длинного вала с насаженными на него дисками. Считая заданным закон движения левого диска в форме θ=θ0 sin ωt, определить вынужденные колебания системы и вычислить амплитуды колебаний отдельных дисков. Моменты инерции дисков J, жесткости участков вала между дисками одинаковы и равны c. Исследовать полученное решение и показать, что система является фильтром низких частот.
55.49 Механическая система, образующая полосовой фильтр для продольных колебаний, состоит из звеньев, каждое из которых образовано массой m, соединенной с массой следующего звена пружиной жесткости c. Параллельно с этой пружиной к массе присоединена пружина жесткости c1, связывающая массу т с неподвижной точкой. Закон продольных колебаний левой массы x=x0 sin ωt задан. Показать, что при значениях ω, лежащих в определенных границах, амплитуды колебаний отдельных масс изменяются с расстоянием по гармоническому закону. Найти соответствующие граничные частоты.
55.50 Система большого числа масс m, насаженных на расстоянии а друг от друга на струну АB, натянутую с усилием Т, и поддерживаемых пружинами жесткости c, является полосовым механическим фильтром поперечных колебаний. Вычислить частоты, отвечающие границам полосы пропускания.
55.51 Нить длины nl подвешена вертикально за один конец и нагружена на равных расстояниях а друг от друга n материальными точками с массами m. Составить уравнения движения. Найти для n=3 частоты поперечных колебаний нити.
55.52 Определить частоты свободных поперечных колебаний натянутой нити с закрепленными концами, несущей на себе n масс m, отстоящих друг от друга на расстояниях l Натяжение нити Р.
54.37 Вертикальный двигатель массы M1 закреплен на фундаменте, имеющем площадь основания S; удельная жесткость грунта равна λ. Длина кривошипа двигателя r, длина шатуна l, угловая скорость вала ω, масса поршня и неуравновешенных частей, совершающих возвратно-поступательное движение, равна М2, масса фундамента М3; кривошип считать уравновешенным при помощи противовеса. Массой шатуна пренебречь. Определить вынужденные колебания фундамента.
54.38 Рассчитать вес фундамента под вертикальный двигатель массы М=10^4 кг таким образом, чтобы амплитуда вынужденных вертикальных колебаний фундамента не превосходила 0,25 мм. Площадь основания фундамента S=100 м2, удельная жесткость грунта, находящегося под фундаментом, λ=490 кН/м3. Длина кривошипа двигателя r=30 см, длина шатуна l=180 см, угловая скорость вала ω=8п рад/с, масса поршня и других неуравновешенных частей, совершающих возвратно-поступательное движение, m=250 кг, кривошип считать уравновешенным при помощи противовеса. Массой шатуна пренебречь.
54.39 Электромотор массы М=1200 кг установлен на свободных концах двух горизонтальных параллельных балок, заделанных вторыми концами в стену. Расстояние от оси электромотора до стены l=1,5 м. Якорь электромотора вращается со скоростью n=50п рад/с, масса якоря m=200 кг центр масс его отстоит от оси вала на расстоянии r=0,05 мм. Модуль упругости мягкой стали, из которой сделаны балки, E=19,6*10^7 Н/см2. Определить момент инерции площади поперечного сечения так, чтобы амплитуда вынужденных колебаний не превосходила 0,5 мм. Весом балки пренебречь.
54.40 Кулачковый механизм для привода клапана может быть схематизирован в виде массы m, прикрепленной с одной стороны с помощью пружины жесткости с к неподвижной точке и получающей с другой стороны через пружину жесткости c1 движение от поступательно движущегося кулачка, профиль которого таков, что вертикальное смещение определяется формулами x1=а [1-cos ωt] при 0≤t≤2п/ω, х2=0 при t>2п/ω. Определить движение массы m
54.41 Для записи крутильных колебаний употребляется торсиограф, состоящий из легкого алюминиевого шкива A, заклиненного на валу В и тяжелого маховичка D, который может свободно вращаться относительно вала B. Вал связан с маховичком D спиральной пружиной жесткости c. Вал В движется по закону φ=ω + φ0 sin ωt (равномерное вращение с наложением гармонических колебаний). Момент инерции маховичка относительно оси вращения J. Исследовать вынужденные колебания маховичка торсиографа.
54.42 Для гашения колебаний коленчатого вала авиационного мотора в противовесе коленчатого вала делается желоб в форме дуги окружности радиуса r с центром, смещенным на AB=l от оси вращения; по желобу может свободно двигаться дополнительный противовес, схематизируемый в виде материальной точки. Угловая скорость вращения вала равна ω. Пренебрегая влиянием силы тяжести, определить частоту малых колебаний дополнительного противовеса.
54.43 К грузу веса P, висящему на пружине жесткости с в начальный момент времени приложена постоянная сила F, действие ко горой прекращается по прошествии времени t. Определить движение груза.
54.44 Определить максимальное отклонение от положения равновесия системы, описанной в предыдущей задаче, в случае действия сил различной продолжительиости: 1) t=0, lim Ft=S 2) t=T/4, 3) t=T/2, где Т-период свободных колебаний системы.
54.45 Найти закон движения маятника, состоящего из материальной точки, висящей на нерастяжимой нити длины l. Точка подвеса маятника движется по заданному закону ε(t) по горизонтальной прямой.
54.46 На материальную точку массы m, подвешенную на пружине жесткости c, действует возмущающая сила, заданная условиями: F=0 при t <0; F=t/τF0 при 0≤t≤τ F=F0 при t >τ. Определить движение точки и найти амплитуду колебаний при t > т.
online-tusa.com
|
SHOP