На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Число записей в разделе: 3236
19.12 Угловая скорость тела ω=7 рад/с, мгновенная ось его составляет в данный момент с неподвижными координатными осями острые углы α, β и γ. Найти величину скорости v и проекции ее vx, vy, vz на координатные оси для точки тела, координаты которой, выраженные в метрах, в данный момент равны 0, 2, 0, а также расстояние d этой точки от мгновенной оси, если cos α=2/7, cos γ=6/7.
19.13 Найти уравнения мгновенной оси и величину угловой скорости ω тела, если известно, что проекции скорости точки M1(0;0;2) на координатные оси, связанные с телом, равны vx1=1 м/с, vy1=2 м/с, vz1=0, а направление скорости точки M2(0;1;2) определяется косинусами углов, образованных с осями координат:-2/3, +2/3,-1/3.
19.14 Коническое зубчатое колесо, свободно насаженное на кривошип OA, обкатывается по неподвижному коническому зубчатому основанию. Определить угловую скорость ω и угловое ускорение ε катящегося колеса, если модули угловой скорости и углового ускорения (их направления указаны на рисунке) кривошипа OA, вращающегося вокруг неподвижной оси O1O, соответственно равны ω0 и ε0.
19.15 В условиях предыдущей задачи определить ускорения точек C и B, если радиус основания равен R.
20.1 Искусственная горизонтальная площадка на качающемся корабле создается с помощью карданова подвеса. Ось y1 вращения внешнего кольца параллельна продольной оси корабля; угол поворота внешнего кольца обозначается через β (угол бортовой качки). Угол поворота внутренней рамки обозначается через α. Для ориентации колец вводят три системы координат: система ξηζ связана с кораблем (ось ξ направлена к правому борту, ось η-к носу корабля, ось ζ-перпендикулярна палубе); система x1y1z1 связана с внешним кольцом (ось y1 совпадает с осью η); система xyz связана с внутренним кольцом (ось x совпадает с x1). Положительные направления отсчета углов видны из рисунков; при α=β=0 все системы отсчета совпадают. Определить ориентацию (соответствующие направляющие косинусы) внутреннего кольца подвеса относительно корабля.
20.2 Во втором способе установки карданова подвеса, описанного в предыдущей задаче, ось вращения внешнего кольца параллельна поперечной оси корабля. При этом способе подвеса ось ξ, связанная с кораблем, совпадает с осью x1 вращения внешнего кольца, а ось y вращения внутреннего кольца совпадает с осью y1, жестко связанной с внешним кольцом. Угол поворота внешнего кольца обозначается теперь α (угол килевой качки), а угол поворота внутреннего кольца-через β. Определить ориентацию внутреннего кольца подвеса относительно корабля.
20.3 Положение твердого тела, имеющего одну неподвижную точку O, определяется тремя углами Эйлера: углом прецессии ψ, углом нутации θ и углом собственного вращения φ (см. рисунок). Определить направляющие косинусы подвижной системы отсчета Oxyz.
20.4 Зная скорости изменения углов Эйлера, определить угловую скорость тела и ее проекции на оси неподвижной Oξηζ и подвижной Oxyz систем отсчета.
20.5 Для определения вращательного движения самолета с ним связывают ортогональную систему координат Cxyz, причем ось x направляется по оси самолета от хвоста к кабине летчика, ось y располагается в плоскости симметрии самолета, а ось z-по размаху крыла вправо для летчика (C-центр тяжести самолета). Угловые перемещения самолета относительной осей Cξηζ (горизонтальная ось ξ направляется по курсу самолета, ось η-вертикально вверх, а горизонтальная ось ζ-перпендикулярно осям ξ и η) определяются, как показано на рисунке, тремя самолетными углами: углом рыскания ψ, углом тангажа θ и углом крена φ. Определить ориентацию самолета (системы отсчета Cxyz) относительно трехгранника Cξηζ.
20.6 Зная скорости изменения самолетных углов, определить проекции угловой скорости самолета на оси систем координат Cxyz и Cξηζ (см. рисунок к предыдущей задаче).
20.7 Для исследования качки корабля и его устойчивости на курсе вводят три корабельных угла: ψ-дифферент, θ-крен и φ-угол рыскания, система отсчета Cxyz жестко связана с кораблем, C-центр тяжести корабля, ось x направлена от кормы к носу, ось y-к левому борту, ось z-перпендикулярно палубе; система координат Cξηζ ориентируется относительно курса корабля: ось ζ вертикальна, горизонтальная ось ξ направлена по курсу, горизонтальная ось η-влево от курса (на рисунке изображены системы осей, введенных A.Н. Крыловым). Определить ориентацию корабля (координатных осей Cxyz) относительно трехгранника Cξηζ.
20.8 Зная скорости изменения корабельных углов, определить проекции угловой скорости корабля на оси систем отсчета Cxyz и Cξηζ (см. рисунок к предыдущей задаче).
20.9 Точка M (центр тяжести самолета, корабля) движется вдоль поверхности Земли, принимаемой за шар радиуса R*; восточная составляющая скорости точки равна vE, а северная-vN. Определить скорость изменения широты φ и долготы λ текущего положения точки M. *Здесь и в дальнейшем сжатием Земли пренебрегаем.
20.10 Для изучения движения вблизи земной поверхности тел (самолетов, ракет, кораблей) и приборов, установленных на них, вводят подвижной координатный трехгранник-трехгранник Дарбу. При географической ориентации трехгранника Дарбу Oξηζ горизонтальная ось ξ направляется на восток, горизонтальная ось η-на север, ось ζ-вертикально вверх. Определить проекции на оси ξ, η, ζ угловой скорости трехгранника Oξηζ, если проекции скорости его начала (точки O) относительно Земли равны vξ=vE, vη=vN, vζ=0; угловая скорость вращения Земли равна U, радиус Земли R.
20.11 Трехгранник Дарбу Oxyz на поверхности Земли ориентирован не географически, как это было сделано в предыдущей задаче, а по траектории основания трехгранника относительно Земли: ось x направляется горизонтально по скорости v вершины O (центр тяжести самолета, корабля) трехгранника относительно Земли, ось у направляется горизонтально влево от оси x, а ось z-вертикально вверх. Определить проекции угловой скорости трехгранника Oxyz, если скорость точки O равна и, а ее курс определяется углом ф (угол между направлением на север и относительной скоростью точки О).
20.12 Трехгранник Дарбу Оx0y0z0 на поверхности Земли ориентирован следующим образом: ось x0 направляется по абсолютной скорости V точки O (предполагается, что она движется по I поверхности Земли), горизонтальная ось у0 направляется влево от оси x°, ось z° вертикальна. Определить проекции угловой скорости трехгранника Оx0y0z0 если составляющие скорости точки O относительно Земли равны Vв и vN.
20.13 Гироскоп направления установлен в кардановом подвесе. Система координат x1y1z1 связана с внешней рамкой (ось вращения ее вертикальна), система xyz скреплена с внутренней рамкой (ось x вращения ее горизонтальна). Ось z внутренней рамки является одновременно осью собственного вращения гироскопа. Определить: 1) ориентацию оси z вращения гироскопа относительно географически ориентированных осей ξηζ (см. задачу 20.10), если поворот внешней рамки (оси y1) отсчитывается по часовой стрелке от плоскости меридиана (плоскость ηζ) и определяется углом α, а подъем оси z над горизонтом определяется углом β; 2) проекции на оси x, y, z угловой скорости вращения трехгранника xyz, предполагая, что точка O подвеса гироскопа неподвижна относительно Земли.
20.14 В условиях предыдущей задачи определить проекции угловой скорости вращения трехгранника xyz, если северная и восточная составляющие скорости точки подвеса соответственно равны vN и vE.
20.15 Движение тела вокруг неподвижной точки задано углами Эйлера: φ=4t, ψ=^π/2-2t, θ=π/3. Определить координаты точки, вычерчивающей годограф угловой скорости, угловую скорость и угловое ускорение тела относительно неподвижных осей x, y, z.
20.16 Найти подвижный и неподвижный аксоиды внешнего колеса вагона, катящегося по горизонтальному пути, средний радиус кривизны которого равен 5 м, радиус колеса вагона 0,25 м, ширина колеи 0,80 м. Примечание. Колесо вращается вместе с вагоном вокруг вертикальной оси Oz, проходящей через центр закругления пути, и относительно вагона вокруг оси AB, т.е. вращается вокруг неподвижной точки O.
20.17 Движение тела вокруг неподвижной точки задано при помощи углов Эйлера следующими уравнениями: φ=nt, ψ=π/2+ant, θ=π/3. Определить проекции угловой скорости и углового ускорения тела на неподвижные оси, если a и n-постоянные величины. Указать также то значение параметра a, при котором неподвижным аксоидом тела будет плоскость Oxy.
20.18 Углы Эйлера, определяющие положение тела, изменяются по закону (регулярная прецессия) ψ=ψ0+n1t, θ=θ0, φ=φ0+n2t, где ψ0, θ0, φ0-начальные значения углов, а n1 и n2-постоянные числа, равные соответствующим угловым скоростям. Определить угловую скорость ω тела, неподвижный и подвижный аксоиды.
21.1 Определить уравнение прямолинейного движения точки, складывающегося из двух гармонических колебании: x1=2cos(πt + π/2); x2=3cos(πt + π)
21.2 Барабан записывающего устройства вращается равномерно со скоростью ω0. Радиус барабана r. Самописец соединен с деталью, движущейся по вертикали по закону y=a sin ω1t. Найти уравнение кривой, которую запишет перо на бумажной ленте.
21.3 При вращении поворотного крана вокруг оси O1O2 с постоянной угловой скоростью ω1 груз A поднимается вверх посредством каната, навернутого на барабан B. Барабан B радиуса r вращается с постоянной угловой скоростью ω2. Определить абсолютную траекторию груза, если вылет крана равен d.
online-tusa.com
|
SHOP