На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по теоретической механике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

Число записей в разделе: 3236

24.41 Крестовина ABCD универсального шарнира Кардана-Гука (AB⊥CD), употребляемого при передаче вращения между пересекающимися осями, вращается вокруг неподвижной точки E. Найти отношение ω1/ω2 для валов, связанных крестовиной, в двух случаях: 1) когда плоскость вилки ABF горизонтальна, а плоскость вилки CDG вертикальна; 2) когда плоскость вилки ABF вертикальна, а плоскость вилки CDG ей перпендикулярна. Угол между осями валов постоянный: α=60°.

24.42 Шаровая дробилка состоит из полого шара диаметра d=10 см, сидящего на оси AB, на которой заклинено колесо с числом зубцов z4=28. Ось AB закреплена во вращающейся раме I в подшипниках a и b. Рама I составляет одно целое с осью CD, приводящейся во вращение при помощи рукоятки III. Вращение шаровой дробилки вокруг оси AB осуществляется при помощи зубчатых колес с числами зубцов z1=80, z2=43, z3=28, причем первое из них неподвижно. Определить абсолютную угловую скорость, угловое ускорение дробилки и скорости и ускорения двух точек E и F, лежащих в рассматриваемый момент времени на оси CD, если рукоятку вращают с постоянной угловой скоростью ω=4,3 рад/с.

24.43 Поворотная часть моста поставлена на катки в виде конических зубчатых колес K, оси которых закреплены в кольцевой раме L наклонно, так что их продолжения пересекаются в геометрическом центре плоской опорной шестерни, по которой перекатываются опорные зубчатые колеса K. Найти угловую скорость и угловое ускорение конического катка, скорости и ускорения точек A, B, C (A-центр конического зубчатого колеса BAC), если радиус основания катка r=0,25 м, угол при вершине 2α, причем cos α=^84/85. Угловая скорость вращения кольцевой рамы вокруг вертикальной оси ω0=const=0,1 рад/с.

24.44 Тело движется в пространстве, причем вектор угловой скорости тела равен ω и направлен в данный момент по оси z. Скорость точки O тела равна v0 и образует с осями y, z одинаковые углы, равные 45°. Найти точку твердого тела, скорость которой будет наименьшей, и определить величину этой скорости.

24.45 Тело A вращается с угловой скоростью ω1 вокруг оси y и движется поступательно со скоростью v1 вдоль той же оси. Тело B движется поступательно со скоростью v2, образующей угол α с осью y. При каком соотношении v1/v2 движение тела A по отношению к телу B будет чистым вращением? Где при этом будет лежать ось вращения?

24.46 Твердое тело, имеющее форму куба со стороной a=2 м участвует одновременно в четырех вращениях с угловыми скоростями ω1=ω4=6 рад/с, ω2=ω3=4 рад/с. Определить результирующее движение тела.

25.1 Колеса паровоза соединены спарником AB. Колеса радиуса r=80 см катятся без скольжения по рельсам налево. При движении из состояния покоя угол поворота колес φ=∠PO1A изменяется по закону φ=3πt^2/4 рад. Вдоль спарника AB, в соответствии с уравнением s=AM=(10+40t2) см, движется ползун M. Определить абсолютную скорость и абсолютное ускорение ползуна M в момент t=1 c, если O1O2=AB, O1A=O2B=r/2.

25.2 Неподвижная шестерня 1 соединена цепью с одинаковой по радиусу подвижной шестерней 2. Шестерня 2 приводится в движение с помощью кривошипа OA=60 см, вращающегося против хода часовой стрелки по закону φ=πt/6 рад. В момент времени t=0 кривошип OA находился в правом горизонтальном положении. Вдоль горизонтальной направляющей BC шестерни 2, совмещенной с осью s, движется ползун M, совершающий колебания около центра A по закону s=AM=20 sin ^πt/2 см. Определить абсолютную скорость и абсолютное ускорение ползуна M в моменты времени: t1=0, t2=1 c.

25.3 Треугольная призма, образующая угол 45° с горизонтом, скользит направо по горизонтальной плоскости со скоростью v (v=2t см/с). По наклонной грани призмы скатывается без скольжения круглый цилиндр. Модуль скорости его центра масс C относительно призмы равен vC=4t см/с. Определить модуль абсолютной скорости и абсолютного ускорения точки A, лежащей на ободе цилиндра, если в момент t=1 с ∠ACD=90°.

25.4 Коническая шестерня M приводится в движение по шестерне N с помощью оси OC, закрепленной в точке O и вращающейся вокруг вертикальной оси z с постоянной угловой скоростью 2 рад/с. Горизонтальная платформа P, к которой прикреплена шестерня N, движется ускоренно вертикально вниз, имея в данный момент скорость v=80 см/с и ускорение w=80√3 см/с^2. Угол BOA=60°, диаметр AB шестерни M равен 20 см. Найти абсолютные скорости и ускорения точек A и B шестерни M.

25.5 Решить предыдущую задачу в предположении, что ось OC вращается вокруг вертикальной оси z с угловой скоростью, равной 2t рад/с. Найти абсолютные ускорения точек A и B конической шестерни M для момента времени t=1 c.

25.6. Поворотный кран вращается вокруг вертикальной неподвижной оси 0,02 с угловой скоростью ω=1 рад/с. Вдоль горизонтальной стрелы крана, совмещенной с осью s, катится без скольжения тележка. Центр масс С ее заднего колеса радиуса 10 см движется по закону sc=OC=60(1 + t) см. Определить модуль абсолютной скорости точки A1, лежащей на ободе колеса, в момент t=1 c, если MCD=*30°. Найти также модули абсолютных ускорений точек А и D, лежащих на ободе колеса, в момент t=1 c, если ACD=90°.

25.7 Шестерня 1 радиуса 10 см приводится в движение внутри шестерни 2 радиуса 40 см с помощью кривошипа OC, вращающегося с постоянной угловой скоростью ω0=2 рад/с. Шестерня 2 в свою очередь вращается вокруг горизонтальной неподвижной оси O1O2 с постоянной угловой скоростью ω=2 рад/с. Определить модули абсолютной скорости и абсолютного ускорения точки A, лежащей на ободе шестерни 1, если ∠OCA=∠O1OC=90°.

25.8. Найти модуль абсолютного ускорения точки А в предыдущей задаче для момента времени t=2 c, если вращение шестерни 2 вокруг неподвижной горизонтальной оси O1O2 происходит с переменной угловой скоростью ω=(2-t) рад/с. Считать, что в момент времени t=2 с точка A занимает положение, указанное на рисунке к предыдущей задаче.

25.9 Шестерня 1 радиуса 10 см приводится в движение по шестерне 2 радиуса 20 см посредством кривошипа OC, вращающегося с угловой скоростью ω0=t рад/с. Шестерня 2 в свою очередь вращается вокруг неподвижной горизонтальной оси O1O2 с постоянной угловой скоростью ω (ω=2 рад/с). Определить модуль абсолютной скорости и абсолютного ускорения в момент t=1 с точки A, лежащей на ободе шестерни 1, если ∠O2OC=∠OCA=90°.

25.10 Кривошип OC с помощью стержня AB приводит в движение ползуны A и B, которые скользят вдоль взаимно перпендикулярных направляющих x и y. Эти направляющие в свою очередь вращаются против хода часовой стрелки вокруг оси O с постоянной угловой скоростью ω (ω=π/2 рад/с). Угол поворота φ кривошипа OC, отсчитываемый от оси x против хода часовой стрелки, изменяется по закону φ=πt/4 рад. Найти модули абсолютной скорости и абсолютного ускорения точки M линейки AB в момент времени t=0, если OC=AC=CB=2BM=16 см.

25.11 Конус 1 с углом при вершине O равным 60° катится без скольжения внутри конуса 2 с углом при вершине 120°. Конус 2 в свою очередь вращается вокруг неподвижной вертикальной оси O1O2 с постоянной угловой скоростью ω (ω=3 рад/с). Точка B обода основания конуса 1 лежит на диаметре BC, расположенном в одной вертикальной плоскости с осью O1O2. Скорость точки B по модулю постоянна, равна 60 см/с и направлена за рисунок перпендикулярно плоскости OBC; OB=OC=20 см, ∠COD=30°. Определить модули абсолютных ускорений точек B и C конуса 1.

25.12 Найти в момент времени t=1 с геометрическое место точек конуса 1, рассмотренного в предыдущей задаче, абсолютные ускорения которых не изменятся, несмотря на то, что скорость точки B будет переменной и равной 60t см/с.

25.13 Круговой конус катится без скольжения по горизонтальному диску, к которому он прикреплен вершиной Q. Диск в свою очередь вращается вокруг неподвижной вертикальной оси O1O2 с постоянной угловой скоростью ω (ω=2 рад/с). Скорость центра A основания конуса относительно покоящегося диска равна по модулю 15 см/с и направлена на читателя перпендикулярно плоскости рисунка. Найти модули абсолютной скорости и абсолютного ускорения точки C касания основания конуса с диском, если OQ=QC=QB=BC=10 см.

25.14 Определить модуль абсолютного ускорения точки C, рассмотренной в предыдущей задаче, для момента времени t=1 с в предположении, что диск вращается ускоренно с угловым ускорением ε (ε=2t рад/с^2), причем в начальный момент времени модуль угловой скорости был равен 2 рад/с.

25.15 Гироскоп установлен на горизонтальной платформе L, вращающейся вокруг неподвижной вертикальной оси O1O'1 с постоянной угловой скоростью ω1 (ω1=2π рад/с). Гироскопом является диск K радиуса r=10 см, вращающийся вокруг горизонтальной оси O2O'2 с постоянной угловой скоростью ω2 (ω2=8π рад/с). Ось O2O'2 в свою очередь вращается вокруг вертикальной оси O3O'3 по закону φ3=2πt^2 рад. В момент времени t=0 диск K лежал в одной вертикальной плоскости с осью O1O'1. Угол φ3 отсчитывается от этой плоскости в направлении, указанном на рисунке. Оси O2O'2 и O3O'3 пересекаются в центре диска K. Найти модули абсолютной скорости и абсолютного ускорения точки A, лежащей на верхнем конце вертикального диаметра AB диска K в момент времени t=1 c, если расстояние между параллельными осями O1O'1 и O3O'3 равно OO3=30 см.

25.16 Вдоль шатуна AB кривошипно-ползунного механизма OAB около точки C совершает колебания муфта M по закону s=CM=20 sin πt/2 см (ось s, направленная вдоль шатуна AB, имеет начало в центре C шатуна). Кривошип OA вращается вокруг горизонтальной оси O, перпендикулярной плоскости рисунка, против хода часовой стрелки по закону φ=πt/2 рад. Определить модули абсолютной скорости и абсолютного ускорения муфты M в момент времени t=0, если OA=10 см, AC=CB=AB/2=20 см.

25.17 Стержень AB длины 4√2 м скользит концом A вниз вдоль оси y, а концом B вдоль оси x направо. Точка A движется по закону yA=(5-t^2) м. Одновременно вдоль стержня от A к B соскальзывает точка M. Определить модуль абсолютной скорости и абсолютного ускорения точки M в момент t=1 c, если уравнение движения точки M вдоль оси s, совмещенной со стержнем, имеет вид s=AM=2√2t2 м.

25.18 Круговой конус 1 с углом при вершине равным 120° прикреплен к неподвижному конусу 2 с углом при вершине 60° шарниром O и катится без скольжения. При этом ось OA конуса 1 совершает вокруг вертикальной оси O1O2 один оборот в секунду. Вдоль диаметра BC=20 см основания конуса 1 проложена направляющая, по которой скользит ползун M, совершая колебания около центра A по закону s=AM=10 cos 2πt см. В начальный момент времени t=0 направляющая BC лежит в одной вертикальной плоскости с шарниром O. Найти модуль абсолютного ускорения ползуна M в момент t=0.

26.1 В шахте опускается равноускоренно лифт массы 280 кг. В первые 10 с он проходит 35 м. Найти натяжение каната, на котором висит лифт.

online-tusa.com | SHOP