На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по геометрии с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
Число записей в разделе: 1971
11.13. В прямоугольный треугольник ABC с углом A, равным 30°, вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон. Найдите расстояние между центрами этих окружностей.
11.14. В треугольнике PQR угол QRP равен 60°. Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR.
11.15. Равносторонний треугольник со стороной 3 вписан в окружность. Точка D лежит на окружности, причём хорда AD равна √3. Найдите хорды BD и CD.
11.16. Пусть O-центр окружности, описанной около треугольника ABC, ∠ AOC=60°. Найдите угол AMC, где M-центр окружности, вписанной в треугольник ABC.
11.17. В треугольнике ABC известно, что AC=b, ∠ ABC=α. Найдите радиус окружности, проходящей через центр вписанного в треугольник ABC круга и вершины A и C.
11.18. В окружности проведены две хорды AB=a и AC=b. Длина дуги AC, не содержащей точки B, вдвое больше длины дуги AB, не содержащей точки C. Найдите радиус окружности.
11.19. Из точки M на окружности проведены три хорды: MN=1, MP=6, MQ=2. При этом углы NMP и PMQ равны. Найдите радиус окружности.
11.20. Через вершины A и B треугольника ABC проходит окружность радиуса r, пересекающая сторону BC в точке D. Найдите радиус окружности, проходящей через точки A, D и C, если AB=c и AC=b.
11.21. Центр описанной окружности треугольника симметричен его центру вписанной окружности относительно одной из сторон. Найдите углы треугольника.
11.22. Угол при основании равнобедренного треугольника равен φ. Найдите отношение радиуса вписанной в данный треугольник окружности к радиусу описанной окружности.
11.23. В треугольнике ABC с периметром 2p сторона AC равна a, острый угол ABC равен α. Вписанная в треугольник ABC окружность с центром O касается стороны BC в точке K. Найдите площадь треугольника BOK.
11.24. В треугольнике ABC с периметром 2p острый угол BAC равен α. Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD=a. Найдите площадь треугольника DOK.
11.25. В треугольник вписана окружность радиуса 4. Одна из сторон треугольника разделена точкой касания на части, равные 6 и 8. Найдите две другие стороны треугольника.
11.26. Прямоугольный треугольник ABC разделен высотой CD, проведённой к гипотенузе, на два треугольника: BCD и ACD. Радиусы окружностей, вписанных в эти треугольники, равны 4 и 3 соответственно. Найдите радиус окружности, вписанной в треугольник ABC.
11.27. К окружности, вписанной в треугольник со сторонами 6, 10 и 12, проведена касательная, пересекающая две большие стороны. Найдите периметр отсечённого треугольника.
11.28. Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120°. Найдите площадь треугольника.
11.29. Пусть CD-медиана треугольника ABC. Окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD в точках M и N. Найдите MN, если AC-BC=2.
11.30. На основании AB равнобедренного треугольника ABC взята точка D, причём BD-AD=4. Найдите расстояние между точками, в которых окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD.
11.31. В четырёхугольнике MNPQ расположены две непересекающиеся окружности так, что одна из них касается сторон MN, NP, PQ, а другая-сторон MN, MQ, PQ. Точки B и A лежат соответственно на сторонах MN и PQ, причём отрезок AB касается обеих окружностей. Найдите длину стороны MQ, если NP=b и периметр четырёхугольника BAQM больше периметра четырёхугольника ABNP на величину 2p.
11.32. Около окружности радиуса R описан параллелограмм. Площадь четырёхугольника с вершинами в точках касания окружности и параллелограмма равна S. Найдите стороны параллелограмма.
11.33. В четырёхугольнике ABCD сторона AB равна стороне BC, диагональ AC равна стороне CD, а ∠ ACB=∠ ACD. Радиусы окружностей, вписанных в треугольники ACB и ACD, относятся как 3:4. Найдите отношение площадей этих треугольников.
11.34. Периметр треугольника ABC равен 8. В треугольник вписана окружность и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB.
11.35. Радиус вписанной в треугольник ABC окружности равен √3-1. Угол BAC равен 60°, а радиус окружности, касающейся стороны BC и продолжений сторон AB и AC, равен √3 + 1. Найдите углы ABC и ACB данного треугольника.
11.36. В параллелограмме ABCD острый угол BAD равен α. Пусть O1, O2, O3, O4-центры окружностей, описанных соответственно около треугольников DAB, DAC, DBC, ABC. Найдите отношение площади четырёхугольника O1O2O3O4 к площади параллелограмма ABCD.
11.37. Около треугольника ABC описана окружность. Медиана AD продолжена до пересечения с этой окружностью в точке E. Известно, что AB + AD=DE, ∠ BAD=60°, AE=6. Найдите площадь треугольника ABC.
online-tusa.com
|
SHOP