На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по геометрии с решениями
В прямоугольный треугольник ABC с углом A, равным 30°, вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон. Найдите расстояние между центрами этих окружностей.

Для просмотра изображения в полном размере нажмите на него
В прямоугольный треугольник ABC с углом A, равным 30°, вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны

Решение задачи 11.13
(ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее Следующее >>
11.11. Трапеция ABCD с основаниями BC=2 и AD=10 такова, что в неё можно вписать окружность и около неё можно описать окружность. Определите, где находится центр описанной окружности, т. е. расположен он внутри или вне её, или же на одной из сторон трапеции ABCD. Найдите также отношение радиусов описанной и вписанной окружностей. 11.12. В прямоугольном треугольнике отношение радиуса вписанной окружности к радиусу описанной окружности равно 2/5. Найдите острые углы треугольника. 11.14. В треугольнике PQR угол QRP равен 60°. Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR. 11.15. Равносторонний треугольник со стороной 3 вписан в окружность. Точка D лежит на окружности, причём хорда AD равна √3. Найдите хорды BD и CD.
online-tusa.com | SHOP