На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
46.1 Написать уравнение Шредингера для электрона, находящегося в водородоподобном атоме.
46.2 Написать уравнение Шредингера для линейного гармонического осциллятора. Учесть, что сила, возвращающая частицу в положение равновесия, f=-βk (где β-коэффициент пропорциональности, x-смещение).
46.3. Временная часть уравнения Шредингера имеет вид ih^dψ/dt=Eψ. Найти решение уравнения.
46.4. Написать уравнение Шредингера для свободного электрона, движущегося в положительном направлении оси x со скоростью v. Найти решение этого уравнения.
46.5. Почему при физической интерпретации волновой функции говорят не о самой ψ-функции, а о квадрате ее модуля ψ^2?
46.6. Чем обусловлено требование конечности ψ-функции?
46.7. Уравнение Шредингера для стационарных состояний имеет вид Обосновать, исходя из этого уравнения, требования, предъявляемые к волновой функции,-ее непрерывность и непрерывность первой производной от волновой функции.
46.8. Может ли |ψ(x)|^2 (квадрат модуля волновой функции) быть больше единицы?
46.9. Показать, что для волновой ψ-функции выполняется равенство |ψ(x)|^2=ψ(x)ψ*(x), где ψ*(x) означает функцию, комплексно сопряженную ψ(х).
46.10. Доказать, что если ψ-функция циклически зависит от времени , то плотность вероятности есть функция только координаты.
46.11. Электрон находится в бесконечно глубоком прямоугольном одномерном потенциальном ящике шириной l (рис. 46.4). Написать уравнение Шредингера и его решение (в тригонометрической форме) для области II((0<х<l).
46.12. Известна волновая функция, описывающая состояние электрона в потенциальном ящике шириной l: ψ(x)=С1 sin kx +С2 cos kx. Используя граничные условия ψ(0)=0 и ψ(l)=0, определить коэффициент C2, и возможные значения волнового вектора k, при котором существуют нетривиальные решения.
46.13. Электрону в потенциальном ящике шириной l отвечает волновое число k==пn/l (n=1, 2, 3,...). Используя связь энергии E электрона с волновым числом k, получить выражение для собственных значений энергии Еn.
46.14 Частица находится в потенциальном ящике. Найти отношение разности соседних энергетических уровней ΔEn+1, n к энергии En частицы в трех случаях: 1) n=3; 2) n=10; 3) n → ∞. Пояснить полученные результаты.
46.15 Электрон находится в потенциальном ящике шириной l=0,5 нм. Определить наименьшую разность ΔE энергетических уровней электрона. Ответ выразить в электрон-вольтах.
46.16 Собственная функция, описывающая состояние частицы в потенциальном ящике, имеет вид ψn(x)=C sin(^πnx/l). Используя условия нормировки, определить постоянную C.
46.17. Решение уравнения Шредингера для бесконечно глубокого одномерного прямоугольного потенциального ящика можно записать в виде ψ(х)=C1e^ikx+С2e-ikx, где k=√2mE/h. Используя граничные условия и нормировку ψ-функции, определить: 1) коэффициенты C1 и С2; 2) собственные значения энергии En. Найти выражение для собственной нормированной ψ-функции.
46.18 Изобразить на графике вид первых трех собственных функций ψn(x), описывающих состояние электрона в потенциальном ящике шириной l, а также вид |ψn(x)|^2. Установить соответствие между числом N узлов волновой функции (т. е. числом точек, где волновая функция обращается в нуль в интервале 0<x<l) и квантовым числом n. Функцию считать нормированной на единицу.
46.19. Частица в потенциальном ящике шириной l находится в возбужденном состоянии (n=2). Определить, в каких точках интервала (0<х<l) плотность вероятности |ψ2(х)|^2 нахождения частицы максимальна и минимальна.
46.20. Электрон находится в потенциальном ящике шириной l. В каких точках в интервале (0<x<l) плотность вероятности нахождения электрона на первом и втором энергетических уровнях одинакова? Вычислить плотность вероятности для этих точек. Решение пояснить графически.
46.21 Частица в потенциальном ящике находится в основном состоянии. Какова вероятность W нахождения частицы: 1) в средней трети ящика; 2) в крайней трети ящика?
46.22. В одномерном потенциальном ящике шириной l находится электрон. Вычислить вероятность W нахождения электрона на первом энергетическом уровне в интервале 1/4, равноудаленном от стенок ящика.
46.23. Частица в потенциальном ящике шириной l находится в низшем возбужденном состоянии. Определить вероятность W нахождения частицы в интервале 1/4, равноудаленном от стенок ящика.
46.24. Вычислить отношение вероятностей нахождения электрона на первом и втором энергетических уровнях в интервале 1/4, равноудаленном от стенок одномерной потенциальной ямы шириной l.
46.25 Показать что собственные функции , описывающие состояние частицы в потенциальном ящике, удовлетворяют условию ортогональности, т. е.
online-tusa.com
|
SHOP