На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
48.12. Определить энергию диссоциации D (в электрон-вольтах) молекулы СО, если ее собственная частота ω=4,08*10^14 с-1 и коэффициент ангармоничности γ=5,83*10-3. Изобразить на потенциальной кривой схему колебательных энергетических уровней и отметить на ней энергию диссоциации.
48.13. Найти коэффициент ангармоничности γ молекулы N2, если ее энергия диссоциации D=9,80 эВ и собственная круговая частота ω=4,45*10^14 с-1. На потенциальной кривой изобразить схему энергетических уровней молекулы и отметить на ней энергию диссоциации.
48.14. Молекула NO переходит из низшего возбужденного состояния в основное. Определить длину волны λ испущенного при этом фотона, если собственная круговая частота ω=3,59*10^14 с -1 и коэффициент ангармоничности γ=8,73*10-3. На потенциальной кривой изобразить схему колебательных энергетических уровней молекулы и отметить на ней соответствующий энергетический переход.
48.15. Найти момент импульса L двухатомной молекулы, соответствующий низшему возбужденному состоянию.
48.16. Определить изменение ΔL момента импульса двухатомной молекулы при переходе ее с первого вращательного уровня на второй.
48.17. Определить угловую скорость ω вращения молекулы S2, находящейся на первом возбужденном вращательном уровне. Межъядерное расстояние d=189 пм.
48.18. Вычислить вращательную постоянную В для молекулы СО, если межъядерное расстояние d=113 пм. Ответ выразить в миллиэлектрон-вольтах.
48.19. Найти момент импульса L молекулы кислорода, вращательная энергия E которой равна 2,16 мэВ.
48.20. Найти момент инерции J и межъядерное расстояние d молекулы СО, если интервалы ΔЕ между соседними линиями чисто вращательного спектра испускания молекул СО равны 0,48 мэВ.
48.21. Определить для молекулы HCl вращательные квантовые числа Y двух соседних уровней, разность энергий ΔEy+1,y которых равна 7,86 мэВ.
48.22. Для молекулы N2 найти: 1) момент инерции Y, если межъядерное расстояние d=110 пм; 2) вращательную постоянную B 3) изменение |ΔE| энергии при переходе молекулы с третьего вращательного энергетического уровня на второй. Относительная атомная масса AN=14.
48.23. Для молекулы О2 найти: 1) приведенную массу μ; 2) межъядерное расстояние d, если вращательная постоянная В=0,178 мэВ; 3) угловую скорость ω вращения, если молекула находится на первом вращательном энергетическом уровне. Относительная атомная масса AO=16.
48.24. Для молекулы NO найти: 1) момент инерции J молекулы, если межъядерное расстояние d=115 пм; 2) вращательную постоянную В молекулы; 3) температуру T, при которой средняя кинетическая энергия поступательного движения молекулы равна энергии, необходимой для ее возбуждения на первый вращательный энергетический уровень. Относительные атомные массы AN и АО равны соответственно 14 и 16.
48.25. Установить числовое соотношение между энергией E излучения и спектроскопическим волновым числом v.
48.26. Найти расстояние d между ядрами молекулы CH, если интервалы Δv между соседними линиями чисто вращательного спектра испускания данной молекулы равны 29 см^-1.
48.27. Определить, на сколько изменится импульс молекул азота при испускании спектральной линии с длиной волны λ=1250 мкм, которая принадлежит чисто вращательному спектру.
48.28. Длины волн λ1 и λ2 двух соседних спектральных линий в чисто вращательном спектре молекулы HCl соответственно равны 117 и 156 мкм. Вычислить вращательную постоянную (см^-1) для молекулы HCl.
48.29. Будет ли монохроматическое электромагнитное излучение с длиной волны λ=3 мкм возбуждать вращательные и колебательные уровни молекулы HF, находящейся в основном состоянии?
48.30. Определить кратность вырождения энергетического уровня двухатомной молекулы с вращательным квантовым числом
47-пример 1. Атом водорода находится в состоянии 1s. Определить вероятность W пребывания электрона в атоме внутри сферы радиусом r=0,1 a (где a-радиус первой боровской орбиты). Волновая функция, описывающая это состояние, считается известной.
47-пример 2. Электрон в возбужденном атоме водорода находится в 3p-состоянии. Определить изменение магнитного момента, обусловленного орбитальным движением электрона, при переходе атома в основное состояние.
47.1. Уравнение Шредингера в сферической системе координат для электрона, находящегося в водородоподобном атоме, имеет вид Показать, что это уравнение разделяется на два, если волновую функцию представить в виде произведения двух функций: ψ(r, v, ψ)=R(r)Y(v, φ)
47.2. Уравнение для радиальной R(r) функции, описывающей состояние электрона в атоме водорода, имеет вид где α, β и l-некоторые параметры. Используя подстановку χ(r)=rR(r), преобразовать его к виду
47.3. Уравнение для радиальной функции χ(r) может быть преобразовано к виду , где α=2mE/h^2; β=Ze2m/(4πε0h)2; l-целое число. Найти асимптотические решения уравнения при больших числах r. Указать, какие решения с Е>0 или с E<0 приводят к связанным состояниям.
47.4. Найти по данным предыдущей задачи асимптотическое решение уравнения при малых r.
online-tusa.com
|
SHOP