На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по физике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

Число записей в разделе: 6529

30.31 В установке для наблюдения колец Ньютона свет с длиной волны λ=0,5 мкм падает нормально на плосковыпуклую линзу с радиусом кривизны R1=1 м, положенную выпуклой стороной на вогнутую поверхность плосковогнутой линзы с радиусом кривизны R2=2 м. Определить радиус r3 третьего темного кольца Ньютона, наблюдаемого в отраженном свете.

30.32 Кольца Ньютона наблюдаются с помощью двух одинаковых плосковыпуклых линз радиусом R кривизны равным 1 м, сложенных вплотную выпуклыми поверхностями (плоские поверхности линз параллельны). Определить радиус r2 второго светлого кольца, наблюдаемого в отраженном свете (λ=660 нм) при нормальном падении света на поверхность верхней линзы.

30.33 На экране наблюдается интерференционная картина от двух когерентных источников света с длиной волны λ=480 нм. Когда на пути одного из пучков поместили тонкую пластинку из плавленого кварца с показателем преломления n=1,46, то интерференционная картина сместилась на m=69 полос. Определить толщину d кварцевой пластинки.

30.34. В оба пучка света интерферометра Жамена были помещены цилиндрические трубки длиной l=10 см, закрытые с обоих концов плоскопараллельными прозрачными пластинками; воздух из трубок был откачан. При этом наблюдалась интерференционная картина в виде светлых и темных полос. В одну из трубок был впущен водород, после чего интерференционная картина сместилась на m=23,7 полосы. Найти показатель преломления n водорода. Длина волны λ света равна 590 нм.

30.35. В интерферометре Жамена две одинаковые трубки длиной l=15 см были заполнены воздухом. Показатель преломления n1 воздуха равен 1,000292. Когда в одной из трубок воздух заменили ацетиленом, то интерференционная картина сместилась на m=80 полос. Определить показатель преломления n2 ацетилена, если в интерферометре использовался источник монохроматического света с длиной волны λ=0,590 мкм.

30.36. Определить перемещение зеркала в интерферометре Майкельсона, если интерференционная картина сместилась на m==100 полос. Опыт проводился со светом с дойной волны λ=546 нм.

30.37. Для измерения показателя преломления аргона в одно из плеч интерферометра Майкельсона поместили пустую стеклянную трубку длиной l=12 см с плоскопараллельными торцовыми поверхностями. При заполнении трубки аргоном (при нормальных условиях) интерференционная картина сместилась на m=106 полос. Определить показатель преломления n аргона, если длина волны λ света равна 639 нм.

30.38. В интерферометре Майкельсона на пути одного из интерферирующих пучков света (λ=590 нм) поместили закрытую с обеих сторон стеклянную трубку длиной l=10 см, откачанную до высокого вакуума. При заполнении трубки хлористым водородом произошло смещение интерференционной картины. Когда хлористый водород был заменен бромистым водородом, смещение интерференционной картины возросло на Δm=42 полосы. Определить разность Δn показателей преломления бромистого и хлористого водорода.

30 пример 1. В точку A экрана от источника S1 монохроматического света длиной волны λ=0,5 мкм приходит два луча: непосредственно от источника луч S1A, перпендикулярный экрану, и луч S1BA, отраженный в точке B от зеркала, параллельного лучу S1A (рис. 30.2). Расстояние l1 экрана от источника равно 1 м, расстояние h от луча S1A до плоскости зеркала равно 2 мм. Определить: 1) что будет наблюдаться в точке A экрана-усиление или ослабление интенсивности; 2) как изменится интенсивность в точке A, если на пути луча S1A перпендикулярно ему поместить плоскопараллельную пластинку стекла (n=1,55) толщиной d=6 мкм.

30 пример 2. На толстую стеклянную пластинку, покрытую очень тонкой пленкой, показатель преломления n2 вещества которой равен 1,4, падает нормально параллельный пучок монохроматического света (λ=0,6 мкм). Отраженный свет максимально ослаблен вследствие интерференции. Определить толщину d пленки.

30 пример 3. На стеклянный клин нормально к его грани падает монохроматический свет с длиной волны λ=0,6 мкм. В возникшей при этом интерференционной картине на отрезке длиной l=1 см наблюдается 10 полос. Определить преломляющий угол θ клина.

29.1 Определить силу света I точечного источника, полный световой поток Ф которого равен 1 лм.

29.2 Лампочка, потребляющая мощность P=75 Вт, создает на расстоянии r=3 м при нормальном падении лучей освещенность E=8 лк. Определить удельную мощность p лампочки (в ваттах на канделу) и световую отдачу η лампочки (в люменах на ватт).

29.3 В вершине кругового конуса находится точечный источник света, посылающий внутри конуса световой поток Ф=76 лм. Сила света I источника равна 120 кд. Определить телесный угол ω и угол раствора 2ϑ конуса.

29.4 Какую силу тока I покажет гальванометр, присоединенный к селеновому фотоэлементу, если на расстоянии r=75 см от него поместить лампочку, полный световой поток Ф0 которой равен 1,2 клм? Площадь рабочей поверхности фотоэлемента равна 10 см^2, чувствительность i=300 мкА/лм.

29.5 Лампочка силой света I=80 кд находится на расстоянии a=2 м от собирательной линзы с диаметром d=12 см и главным фокусным расстоянием f=40 см. Линза дает на экране, расположенном на расстоянии b=30 см от линзы, круглое светлое пятно. Найти освещенность E экрана на месте этого пятна. Поглощением света в линзе пренебречь.

29.6 При печатании фотоснимка негатив освещался в течение t1=3 с лампочкой силой света I1=15 кд с расстояния r1=50 см. Определить время t2, в течение которого нужно освещать негатив лампочкой силой света I2=60 кд с расстояния r2=2 м, чтобы получить отпечаток с такой же степенью почернения, как и в первом случае?

29.7 На высоте h=3 м над землей и на расстоянии r=4 м от стены висит лампа силой света I=100 кд. Определить освещенность E1 стены и E2 горизонтальной поверхности земли у линии их пересечения.

29.8 На мачте высотой h=8 м висит лампа силой света I=1 ккд. Принимая лампу за точечный источник света, определить, на каком расстоянии l от основания мачты освещенность E поверхности земли равна 1 лк.

29.9 Над центром круглой площадки висит лампа. Освещенность E1 в центре площадки равна 40 лк, E2 на краю площадки равна 5 лк. Под каким углом ε падают лучи на край площадки?

29.10 Над центром круглого стола радиусом r=80 см на высоте h=60 см висит лампа силой света I=100 кд. Определить: 1) освещенность E1 в центре стола; 2) освещенность E2 на краю стола; 3) световой поток Ф, падающий на стол; 4) среднюю освещенность <E> стола.

29.11 На какой высоте h над центром круглого стола радиусом r=1 м нужно повесить лампочку, чтобы освещенность на краю стола была максимальной?

29.12 Отверстие в корпусе фонаря закрыто плоским молочным стеклом размером 10x15 см. Сила света I фонаря в направлении, составляющем угол φ=60° с нормалью, равна 15 кд. Определить яркость L стекла.

29.13 Вычислить и сравнить между собой силы света раскаленного металлического шарика яркостью L1=3 Мкд/м^2 и шарового светильника яркостью L2=5 ккд/м2, если их диаметры d1 и d2 соответственно равны 2 мм и 20 см.

29.14 Светильник из молочного стекла имеет форму шара диаметром d=20 см. Сила света I шара равна 80 кд. Определить полный световой поток Ф, светимость M и яркость L светильника.

online-tusa.com | SHOP