На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
6 пример 4. Физический маятник представляет собой стержень длиной l=1 м и массой 3m1 с прикрепленным к одному из его концов обручем диаметром d=^1/2 l и массой m1. Горизонтальная ось Oz маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период T колебаний такого маятника.
6 пример 5. Складываются два колебания одинакового направления, выражаемых уравнениями x1=A1 cos ω(t+τ1); x2=A2 cos ω(t+τ2), где А=1 см, A2=2 см, τ1=1/6 c, τ2=1/2 с, ω=π с^-1. 1. Определить начальные фазы φ1 и φ2 составляющих колебаний. 2. Найти амплитуду A и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.
6 пример 6. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравнения которых x=A1 cos ωt, y=A2 cos ω/2 t, где A1=1 см, A2=2 см, ω=π с^-1. Найти уравнение траектории точки. Построить траекторию с соблюдением масштаба и указать направление движения точки.
6.1 Уравнение колебаний точки имеет вид x=A cos ω(t+τ), где ω=π с^-1, τ=0,2 c. Определить период T и начальную фазу φ колебаний.
6.2 Определить период T, частоту ν и начальную фазу φ колебаний, заданных уравнением x=A sin ω(t+τ), где ω=2,5π с^-1, τ=0,4 c.
6.3. Точка совершает колебания по закону x=А cos(ωt + φ), где А=4 см. Определить начальную фазу φ, если: Построить векторную диаграмму для момента t=0. Решение данной задачи похоже на решение этой задачи.
6.4. Точка совершает колебания по закону x=А cos(ωt + φ), где А=4 см. Определить начальную фазу φ, если Построить векторную диаграмму для момента t=0.
6.5. Точка совершает колебания по закону x=А cos(ωt + φ), где А=2 см; ω=п с^-1; φ=п/4 рад. Построить графики зависимости от времени: 1) смещения x(t); 2) скорости x(t); 3) ускорения x(t).
6.6. Точка совершает колебания с амплитудой А=4 см и периодом Т=2 c. Написать уравнение этих колебаний, считая, что в момент t=0 смещения х(0)=0 и х(0)<0. Определить фазу (ωt+φ) для двух моментов времени: 1) когда смещение x=1 см и х>0; 2) когда скорость x=-6 см/с и х<0.
6.7 Точка равномерно движется по окружности против часовой стрелки с периодом T=6 c. Диаметр d окружности равен 20 см. Написать уравнение движения проекции точки на ось x, проходящую через центр окружности, если в момент времени, принятый за начальный, проекция на ось x равна нулю. Найти смещение x, скорость x' и ускорение x'' проекции точки в момент t=1 c.
6.8 Определить максимальные значения скорости vmax и ускорения amax точки, совершающей гармонические колебания с амплитудой A=3 см и угловой частотой ω=π/2 с^-1.
6.9 Точка совершает колебания по закону x=A cos ωt, где A=5 см; ω=2 с^-1. Определить ускорение |a| точки в момент времени, когда ее скорость v=8 см/с.
6.10 Точка совершает гармонические колебания. Наибольшее смещение xmax точки равно 10 см, наибольшая скорость vmax=20 см/с. Найти угловую частоту ω колебаний и максимальное ускорение amax точки.
6.11 Максимальная скорость vmax точки, совершающей гармонические колебания, равна 10 см/с, максимальное ускорение amax=100 см/с^2. Найти угловую частоту ω колебаний, их период T и амплитуду A. Написать уравнение колебаний, приняв начальную фазу равной нулю.
6.12 Точка совершает колебания по закону x=A sin ωt. В некоторый момент времени смещение x1 точки оказалось равным 5 см. Когда фаза колебаний увеличилась вдвое, смещение x2 стало равным 8 см. Найти амплитуду A колебаний.
6.13 Колебания точки происходят по закону x=A cos (ωt+φ). В некоторый момент времени смещение x точки равно 5 см, ее скорость v=20 см/с и ускорение a=-80 см/с^2. Найти амплитуду A, угловую частоту ω, период Т колебаний и фазу (ωt+φ) в рассматриваемый момент времени.
6.14 Два одинаково направленных гармонических колебания одного периода с амплитудами A1=10 см и A2=6 см складываются в одно колебание с амплитудой A=14 см. Найти разность фаз Δφ складываемых колебаний.
6.15 Два гармонических колебания, направленных по одной прямой и имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз Δφ складываемых колебаний.
6.16 Определить амплитуду A и начальную фазу φ результирующего колебания, возникающего при сложении двух колебаний одинаковых направления и периода: x1=A1 sin ωt и x2=A2 sin ω(t+τ), где A1=A2=1 см; ω=π с^-1; τ=0,5 c. Найти уравнение результирующего колебания.
6.17 Точка участвует в двух одинаково направленных колебаниях: x1=A1 sin ωt и x2=A2 cos ωt, где A1=1 см; A2=2 см; ω=1 с^-1. Определить амплитуду A результирующего колебания, его частоту ν и начальную фазу φ. Найти уравнение этого движения.
6.18. Складываются два гармонических колебания одного направления с одинаковыми периодами T1=T2=1,5 с и амплитудами А1=А2=2 см. Начальные фазы колебаний φ1=п/2 и φ2=п/3. Определить амплитуду А и начальную фазу φ результирующего колебания. Найти его уравнение и построить с соблюдением масштаба векторную диаграмму сложения амплитуд.
6.19 Складываются три гармонических колебания одного направления с одинаковыми периодами T1=T2=T3=2 с и амплитудами A1=A2=A3=3 см. Начальные фазы колебаний φ1=0, φ2=π/3, φ3=2π/3. Построить векторную диаграмму сложения амплитуд. Определить из чертежа амплитуду A и начальную фазу φ результирующего колебания. Найти его уравнение.
6.20. Складываются два гармонических колебания одинаковой частоты и одинакового направления: x1=A1 cos (ωt + φ1) и х2=A2 cos(ωt+φ2). Начертить векторную диаграмму для момента времени t=0. Определить аналитически амплитуду А и начальную фазу φ результирующего колебания. Отложить А и φ на векторной диаграмме. Найти уравнение результирующего колебания (в тригонометрической форме через косинус). Задачу решить для двух случаев: 1) А1=1 см, φ1=п/3; А2=2 см, φ2=5п/6; 2) А1=1 см, φ1=2п/3; А2=1 см, φ2=7п/6.
6.21 Два камертона звучат одновременно. Частоты ν1 и ν2 их колебаний соответственно равны 440 и 440,5 Гц. Определить период T биений.
6.22 Складываются два взаимно перпендикулярных колебания, выражаемых уравнениями x=A1 sin ωt и y=A2 cos ω(t+τ), где A1=2 см, A2=1 см, ω=π с^-1, τ=0,5 c. Найти уравнение траектории и построить ее, показав направление движения точки.
online-tusa.com
|
SHOP