На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
51.33. При какой частоте v0 переменного магнитного поля будет наблюдаться ЯМР ядер 1^9P (I=1/2; μ=2,63μN), если магнитная индукция B0 постоянного поля равна 2,35 Тл?
51.34. Ядра Li (I=3/2 и g=2,18) находятся в однородном магнитном поле (B0=2 Тл). Температура T окружающей среды равна 80 К. Найти отношение заселенностей каждого из возможных энергетических уровней к заселенности уровня с наименьшей энергией.
Пример 1. Кусок металла объема V=20 см^3 находится при температуре T=0. Определить число ΔN свободных электронов, импульсы которых отличаются от максимального импульса p mах не более чем на 0,1 p mах. Энергия Ферми ef=5эВ.
Пример 2. Образец из германия n-типа в виде пластины длиной L=10 см и шириной 1=6 мм помещен в однородное магнитное поле (В=0,1 Тл) перпендикулярно линиям магнитной индукции. При напряжении U=250 B, приложенном к концам пластины, возникает холловская разность потенциалов UH=8,8 мВ. Определить: 1) постоянную Холла RH; 2) концентрацию nn носителей тока. Удельную проводимость у германия принять равной 80 См/м.
Пример 3. Образец из вещества, содержащего эквивалентные ядра (протоны), находится в однородном внешнем магнитном поле (В=1 Тл). Определить: 1) относительную разность заселенностей энергетических уровней при температуре T=300 К; 2) частоту v0, при которой будет происходить ядерный магнитный резонанс. Экранирующим действием электронных оболочек и соседних ядер пренебречь.
Пример 1. Определить количество теплоты ΔQ, необходимое для нагревания кристалла NaCl массой m=20 г на ΔT=2 К, в двух случаях, если нагревание происходит от температуры: 1) T1=θD; 2) T2=2 К. Характеристическую температуру Дебая θD для NaCl принять равной 320 К.
50.1 Вычислить удельные теплоемкости C кристаллов алюминия и меди по классической теории теплоемкости.
50.2. Пользуясь классической теорией, вычислить удельные теплоемкости с кристаллов NaCl и СаCl2.
50.3. Вычислить по классической теории теплоемкости теплоемкость C кристалла бромида алюминия AlВr3 объемом V=1 м^3. Плотность ρ кристалла бромида алюминия равна 3,01*103 кг/м3.
50.4. Определить изменение ΔU внутренней энергии кристалла никеля при нагревании его от T=0 °С до T2=200 °С. Масса m кристалла равна 20 г. Теплоемкость C вычислить.
50.5. Вывести формулу для средней энергии <e> классического линейного гармонического осциллятора при тепловом равновесии. Вычислить значение <e> при T=300 К.
50.6 Определить энергию U и теплоемкость C системы, состоящей из N=10^25 классических трехмерных независимых гармонических осцилляторов. Температура T=300 K.
50.7. Определить: 1) среднюю энергию e линейного одномерного квантового осциллятора при температуре T=θE (θE=200 К); 2) энергию U системы, состоящей из N=10^25 квантовых трехмерных независимых осцилляторов, при температуре T=θE (θE=300 К).
50.8. Найти частоту v колебаний атомов серебра по теории теплоемкости Эйнштейна, если характеристическая температура θE серебра равна 165 К.
50.9. Во сколько раз изменится средняя энергия (e) квантового осциллятора, приходящаяся на одну степень свободы, при повышении температуры от T1=θE/2 до T2=θE? Учесть нулевую энергию.
50.10. Определить отношение (e)/(eT) средней энергии квантового осциллятора к средней энергии теплового движения молекул идеального газа при температуре T=θE.
50.11. Используя квантовую теорию теплоемкости Эйнштейна, вычислить изменение ΔUm молярной внутренней энергии кристалла при нагревании его на ΔT=2 К от температуры T=θE/2.
50.12. Пользуясь теорией теплоемкости Эйнштейна, определить изменение ΔUm молярной внутренней энергии кристалла при нагревании его от нуля до T1=0,1 θE. Характеристическую температуру θE Эйнштейна принять для данного кристалла равной 300 К.
50.13 Определить относительную погрешность, которая будет допущена, если при вычислении теплоемкости C вместо значения, даваемого теорией Эйнштейна (при T=θE), воспользоваться значением, даваемым законом Дюлонга и Пти.
50.14. Вычислить по теории Эйнштейна молярную нулевую энергию Um0 кристалла цинка. Характеристическая температура θE для цинка равна 230 К.
50.15. Рассматривая в дебаевском приближении твердое тело как систему из продольных и поперечных стоячих волн, установить функцию распределения частот g(ω) для кристалла с трехмерной кристаллической решеткой. При выводе принять, что число собственных колебаний Z ограничено и равно 3N (N-число атомов в рассматриваемом объеме).
50.16. Зная функцию распределения частот g (ω)=9N/ω^3max ω2 для трехмерной кристаллической решетки, вывести формулу для энергии кристалла, содержащего число N (равное постоянной Авогадро) атомов.
50.17. Используя формулу энергии трехмерного кристалла получить выражение для молярной теплоемкости.
50.18 Молярная теплоемкость трехмерного кристалла Cm. Найти предельное выражение молярной теплоемкости при низких температурах (Δ<<θD).
50.19. Вычислить по теории Дебая молярную нулевую энергию Um0 кристалла меди. Характеристическая температура θD меди равна 320 К. Решение: Молярную нулевую энергию колебаний кристалла (теории Дебая) меди определим из формулы: Um,0=9/8*R*θD, где R-универсальная газовая постоянная, тогда Um,0=9/8*8,31 Дж/(моль*К)*320К ≈ 2,99кДж/К. Ответ: 2.99кДж/К.
online-tusa.com
|
SHOP