На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
32.14. В фотометре одновременно рассматривают две половины поля зрения: в одной видна эталонная светящаяся поверхность с яркостью L1=5 ккд/м^2, в другой-испытуемая поверхность, свет от которой проходит через два николя. Граница между обеими половинами поля зрения исчезает, если второй николь повернуть относительно первого на угол α=45°. Найти яркость L2 испытуемой поверхности, если известно, что в каждом из николей интенсивность падающего на него света уменьшается на 8 %.
32.15 В частично-поляризованном свете амплитуда светового вектора, соответствующая максимальной интенсивности света, в n=2 раза больше амплитуды, соответствующей минимальной интенсивности. Определить степень поляризации P света.
32.16 Степень поляризации P частично-поляризованного света равна 0,5. Во сколько раз отличается максимальная интенсивность света, пропускаемого через анализатор, от минимальной?
32.17 На пути частично-поляризованного света, степень поляризации P которого равна 0,6, поставили анализатор так, что интенсивность света, прошедшего через него, стала максимальной. Во сколько раз уменьшится интенсивность света, если плоскость пропускания анализатора повернуть на угол α=30°?
32.18 На николь падает пучок частично-поляризованного света. При некотором положении николя интенсивность света, прошедшего через него, стала минимальной. Когда плоскость пропускания николя повернули на угол β=45°, интенсивность света возросла в k=1,5 раза. Определить степень поляризации Р света.
32.19 Пластинку кварца толщиной d1=2 мм, вырезанную перпендикулярно оптической оси, поместили между параллельными николями, в результате чего плоскость поляризации света повернулась на угол φ=53°. Определить толщину d2 пластинки, при которой данный монохроматический свет не проходит через анализатор.
32.20. Никотин (чистая жидкость), содержащийся в стеклянной трубке длиной d=8 см, поворачивает плоскость поляризации желтого света натрия на угол φ=137°. Плотность никотина ρ=1,01*10^3 кг/м3. Определить удельное вращение [а] никотина.
32.21 Раствор глюкозы с массовой концентрацией C1=280 кг/м^3, содержащийся в стеклянной трубке, поворачивает плоскость поляризации монохроматического света, проходящего через этот раствор, на угол φ1=32°. Определить массовую концентрацию C2 глюкозы в другом растворе, налитом в трубку такой же длины, если он поворачивает плоскость поляризации на угол φ2=24°.
32.22. Угол φ поворота плоскости поляризации желтого света натрия при прохождении через трубку с раствором сахара равен 40°. Длина трубки d=15 см. Удельное вращение α сахара равно 1,17*10^2 рад*м3/(м*кг). Определить плотность ρ раствора.
31.1 Зная формулу радиуса k-й зоны Френеля для сферической волны (ρk=√abkλ/(a+b)), вывести соответствующую формулу для плоской волны.
31.2 Вычислить радиус ρ5 пятой зоны Френеля для плоского волнового фронта (λ=0,5 мкм), если построение делается для точки наблюдения, находящейся на расстоянии b=1 м от фронта волны.
31.3 Радиус ρ4 четвертой зоны Френеля для плоского волнового фронта равен 3 мм. Определить радиус ρ6 шестой зоны Френеля.
31.4 На диафрагму с круглым отверстием диаметром d=4 мм падает нормально параллельный пучок лучей монохроматического света (λ=0,5 мкм). Точка наблюдения находится на оси отверстия на расстоянии b=1 м от него. Сколько зон Френеля укладывается в отверстии? Темное или светлое пятно получится в центре дифракционной картины, если в месте наблюдений поместить экран?
31.5 Плоская световая волна (λ=0,5 мкм) падает нормально на диафрагму с круглым отверстием диаметром d=1 см. На каком расстоянии b от отверстия должна находиться точка наблюдения, чтобы отверстие открывало: 1) одну зону Френеля? 2) две зоны Френеля?
31.6 Плоская световая волна падает нормально на диафрагму с круглым отверстием. В результате дифракции в некоторых точках оси отверстия, находящихся на расстояниях bi от его центра, наблюдаются максимумы интенсивности. 1. Получить вид функции b=f(r, λ, n), где r-радиус отверстия; λ-длина волны; n-число зон Френеля, открываемых для данной точки оси отверстием. 2. Сделать то же самое для точек оси отверстия, в которых наблюдаются минимумы интенсивности.
31.7 Плоская световая волна (λ=0,7 мкм) падает нормально на диафрагму с круглым отверстием радиусом r=1,4 мм. Определить расстояния b1, b2, b3 от диафрагмы до трех наиболее удаленных от нее точек, в которых наблюдаются минимумы интенсивности.
31.8 Точечный источник S света (λ=0,5 мкм), плоская диафрагма с круглым отверстием радиусом r=1 мм и экран расположены, как это указано на рис. 31.4 (a=1 м). Определить расстояние b от экрана до диафрагмы, при котором отверстие открывало бы для точки P три зоны Френеля.
31.9 Как изменится интенсивность в точке P (см. задачу 31.8), если убрать диафрагму?
31.10 На щель шириной a=0,05 мм падает нормально монохроматический свет (λ=0,6 мкм). Определить угол φ между первоначальным направлением пучка света и направлением на четвертую темную дифракционную полосу.
31.11 На узкую щель падает нормально монохроматический свет. Угол φ отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1°. Скольким длинам волн падающего света равна ширина щели?
31.12 На щель шириной a=0,1 мм падает нормально монохроматический свет (λ=0,5 мкм). За щелью помещена собирающая линза, в фокальной плоскости которой находится экран. Что будет наблюдаться на экране, если угол φ дифракции равен: 1) 17'; 2) 43'.
31.13 Сколько штрихов на каждый миллиметр содержит дифракционная решетка, если при наблюдении в монохроматическом свете (λ=0,6 мкм) максимум пятого порядка отклонен на угол φ=18°?
31.14 На дифракционную решетку, содержащую n=100 штрихов на 1 мм, падает нормально монохроматический свет. Зрительная труба спектрометра наведена на максимум третьего порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Δφ=20°. Определить длину волны λ света.
31.15 Дифракционная решетка освещена нормально падающим монохроматическим светом. В дифракционной картине максимум второго порядка отклонен на угол φ1=14°. На какой угол φ2 отклонен максимум третьего порядка?
31.16 Дифракционная решетка содержит n=200 штрихов на 1 мм. На решетку падает нормально монохроматический свет (λ=0,6 мкм). Максимум какого наибольшего порядка дает эта решетка?
online-tusa.com
|
SHOP