На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
4.67. Стержень из стали имеет длину l=2 м и площадь поперечного сечения S=10 мм^2. Верхний конец стержня закреплен неподвижно, к нижнему прикреплен упор. На стержень надет просверленный посередине груз массой m=10 кг (рис. 4.10). Груз падает с высоты h=10 см и задерживается упором. Наити: 1) удлинение x стержня при ударе груза; 2) нормальное напряжение σ, возникающее при этом в материале стержня.
3 пример 1. Вычислить момент инерции Jz молекулы NO2 относительно оси z, проходящей через центр масс молекулы перпендикулярно плоскости, содержащей ядра атомов. Межъядерное расстояние d этой молекулы равно 0,118 нм, валентный угол α=140°.
3 пример 2. Физический маятник представляет собой стержень длиной l=1 м и массой m1=1 кг с прикрепленным к одному из его концов диском массой m2=0,5 m1. Определить момент инерции Jz такого маятника относительно оси Оz, проходящей через точку O на стержне перпендикулярно плоскости чертежа (рис. 3.2).
3 пример 3. Вал в виде сплошного цилиндра массой m1=10 кг насажен на горизонтальную ось. На цилиндр намотан шнур, к свободному концу которого подвешена гиря массой m2=2 кг (рис. 3.3). С каким ускорением a будет опускаться гиря, если ее предоставить самой себе?
3 пример 4. Через блок в виде диска, имеющий массу m=80 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m1=100 г и m2=200 г (рис. 3.4). С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.
3 пример 5. Маховик в виде диска массой m=50 кг и радиусом r=20 см был раскручен до частоты вращения n1=480 мин^-1 и затем предоставлен самому себе. Вследствие трения маховик остановился. Найти момент M сил трения, считая его постоянным для двух случаев: 1) маховик остановился через t=50 c; 2) маховик до полной остановки сделал N=200 оборотов.
3 пример 6. Платформа в виде диска радиусом R=1,5 м и массой m1=180 кг вращается по инерции около вертикальной оси с частотой n=10 мин^-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?
3 пример 7. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n1=0,5 с^-1. Момент инерции J0 тела человека относительно оси вращения равен 1,6 кг*м2. В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями ℓ1=1,6 м. Определить частоту вращения n2 скамьи с человеком, когда он опустит руки и расстояние ℓ2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.
3 пример 8. Стержень длиной l=1,5 м и массой M=10 кг может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня (рис. 3.6). В середину стержня ударяет пуля массой m=10 г, летящая в горизонтальном направлении со скоростью v0=500 м/с, и застревает в стержне. На какой угол φ отклонится стержень после удара?
3.1 Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см.
3.2 Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции J системы относительно оси, перпендикулярной стержню и проходящей через центр масс.
3.3 Два шара массами m и 2m (m=10 г) закреплены на тонком невесомом стержне длиной l=40 см так, как это указано на рис. 3.7, a, б. Определить моменты инерции J системы относительно оси, перпендикулярной стержню и проходящей через его конец в этих двух случаях. Размерами шаров пренебречь.
3.4 Три маленьких шарика массой m=10 г каждый расположены в вершинах равностороннего треугольника со стороной a=20 см и скреплены между собой. Определить момент инерции J системы относительно оси: 1) перпендикулярной плоскости треугольника и проходящей через центр описанной окружности; 2) лежащей в плоскости треугольника и проходящей через центр описанной окружности и одну из вершин треугольника. Массой стержней, соединяющих шары, пренебречь.
3.5. Определить моменты инерции Jx, Jу, Jz трехатомных молекул типа АВ2 относительно осей x, y, z (рис. 3.8), проходящих через центр инерции С молекулы (ось z перпендикулярна плоскости ху). Межъядерное расстояние AB обозначено d, валентный угол α. Вычисления выполнить для следующих молекул: 1) H2O(d=0,097 нм, α=104°30'); 2) SO2 (d=0,145 нм, α=124°).
3.6 Определить момент инерции J тонкого однородного стержня длиной l=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через: 1) его конец; 2) его середину; 3) точку, отстоящую от конца стержня на 1/3 его длины.
3.7 Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на a=20 см от одного из его концов.
3.8 Вычислить момент инерции J проволочного прямоугольника со сторонами a=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линейной плотностью τ=0,1 кг/м.
3.9 Два однородных тонких стержня: AB длиной ℓ1=40 см и массой m1=900 г и CD длиной ℓ2=40 см и массой m2=400 г скреплены под прямым углом (рис. 3.9). Определить момент инерции J системы стержней относительно оси OO', проходящей через конец стержня AB параллельно стержню CD.
3.10 Решить предыдущую задачу для случая, когда ось OO' проходит через точку A перпендикулярно плоскости чертежа.
3.11 Определить момент инерции J проволочного равностороннего треугольника со стороной a=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине (рис. 3.10, а); 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса m треугольника равна 12 г и равномерно распределена по длине проволоки.
3.12 На концах тонкого однородного стержня длиной l и массой Зm прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стержню и проходящей через точку O, лежащую на оси стержня. Вычисления выполнить для случаев a, б, в, г, д, изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.
3.13 Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.
3.14. Определить момент инерции J кольца массой m=50 г и радиусом R=10 см относительно оси, касательной к кольцу.
3.15 Диаметр диска d=20 см, масса m=800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.
3.16 В однородном диске массой m=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.
online-tusa.com
|
SHOP