На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
51.8 Электроны в металле находятся при температуре T=0 К. Найти относительное число ΔN/N свободных электронов, кинетическая энергия которых отличается от энергии Ферми не более чем на 2 %.
51.9. Оценить температуру Tкр вырождения для калия, если принять, что на каждый атом приходится по одному свободному электрону. Плотность ρ калия 860 кг/м^3.
51.10. Определить отношение концентрации n max электронов в металле (при T=0 К), энергия которых отличается от максимальной не более чем на Δe, к концентрации электронов n min, энергии которых не превышают значения e=Δe; Δe принять равным 0,01ef.
51.11. Зная распределение dn(e) электронов в металле по энергиям, установить распределение dn(p) электронов по импульсам. Найти частный случай распределения при T=0 К.
51.12. По функции распределения dn (p) электронов в металле по импульсам установить распределение dn(v) по скоростям: 1) при любой температуре T; 2) при T=0 К.
51.13. Определить максимальную скорость vmах электронов в металле при T=0 К, если уровень Ферми ef=5 эВ.
51.14. Выразить среднюю скорость (v) электронов в металле при T=0 К через максимальную скорость v mах. Вычислить (v) для металла, уровень Ферми ef которого при T=0 К равен 6 эВ.
51.15. Металл находится при температуре T=0 К. Определить, во сколько раз число электронов со скоростями от v max/2 до v mах больше числа электронов со скоростями от 0 до vmax/2.
51.16. Выразить среднюю квадратичную скорость √(v^2) электронов в металле при T=0 К через максимальную скорость vmax электронов. Функцию распределения электронов по скоростям считать известной.
51.17. Зная распределение dn(v) электронов в металле по скоростям, выразить (1/v) через максимальную скорость vmax электронов в металле. Металл находится при T=0 К.
51.18. Определить уровень Ферми еf в собственном полупроводнике, если энергия ΔE0 активации равна 0,1 эВ. За нулевой уровень отсчета кинетической энергии электронов принять низший уровень зоны проводимости.
51.19 Собственный полупроводник (германий) имеет при некоторой температуре удельное сопротивление ρ=0,48 Ом*м. Определить концентрацию n носителей заряда, если подвижности bn и bp электронов и дырок соответственно равны 0,36 и 0,16 м^2/(В*с).
51.20 Удельная проводимость γ кремния с примесями равна 112 См/м. Определить подвижность bp дырок и их концентрацию np, если постоянная Холла RH=3,66*10^-4 м3/Кл. Принять, что полупроводник обладает только дырочной проводимостью.
51.21. В германии часть атомов замещена атомами сурьмы. Рассматривая дополнительный электрон примесного атома но модели Бора, оценить его энергию E связи и радиус r орбиты. Диэлектрическая проницаемость e германия равна 16.
51.22. Полупроводник в виде тонкой пластины шириной l=1 см и длиной L=10 см помещен в однородное магнитное поле с индукцией В=0,2 Тл. Вектор магнитной индукции перпендикулярен плоскости пластины. К концам пластины (по направлению L) приложено постоянное напряжение U=300 B. Определить холловскую разность потенциалов UH на гранях пластины, если постоянная Холла RH=0,1 м^3/Кл, удельное сопротивление ρ=0,5 Ом*м.
51.23. Тонкая пластина из кремния шириной l=2см помещена перпендикулярно линиям индукции однородного магнитного поля (B=0,5 Тл). При плотности тока j=2 мкА/мм^2, направленного вдоль пластины, холловская разность потенциалов Uн оказалась равной 2,8 B. Определить концентрацию n носителей заряда
51.24. Определить гиромагнитное отношение γ для свободного электрона.
51.25. Свободный электрон находится в постоянном магнитном поле (B0=1 Тл). Определить частоту v0 переменного магнитного поля, при которой происходит резонансное поглощение энергии электроном (g-фактор для свободного электрона равен 2).
51.26. Определить отношение ωЭПР/ωЦИК резонансной частоты электронного парамагнитного резонанса к циклотронной частоте (g фактор равен 2,00232).
51.27. Стандартные спектрометры для наблюдения электронного парамагнитного резонанса (ЭПР) имеют на одном из диапазонов фиксированную частоту v0=9,9 ГГц. Определить магнитную индукцию поля B0, при которой происходит резонансное поглощение энергии радиочастотного поля свободным электроном (g фактор равен 2).
51.28. Определить гиромагнитное отношение γ для свободного протона.
51.29. Свободный протон находится в постоянном магнитном поле (B0=1 Тл). Определить частоту v0 переменного магнитного поля, при которой происходит резонансное поглощение энергии протоном (g-фактор равен 5,58).
51.30. В опытах по изучению магнитным резонансным методом магнитных свойств атомов ^25Mg в основном состоянии обнаружено резонансное поглощение энергии при магнитной индукции B0 поля, равной 0,54 Тл, и частоте v0 переменного магнитного поля, равной 1,4 МГц. Определить ядерный g-фактор.
51.31. Методом магнитного резонанса определяют магнитный момент нейтрона. Резонансное поглощение наблюдается при магнитной индукции В0 поля, равной 0,682 Тл, и частоте v0 переменного магнитного поля, равной 19,9 МГц. Вычислить ядерный g-фактор и магнитный момент μn нейтрона. Известно, что направления спинового механического и магнитного моментов противоположны. Спин нейтрона I=1/2.
51.32. Для молекулы HD, находящейся в основном состоянии, ядерный магнитный резонанс наблюдался: 1) для протонов (I=1/2) в постоянном магнитном поле (B0=94 мТл) при частоте v0 переменного магнитного поля, равной 4 МГц; 2) для дейтонов (I=1) соответственно при B0=0,37 Тл и v0=2,42 МГЦ. Определить по этим данным g-факторы и магнитные моменты μр и μd протона и дейтона (в единицах μN).
online-tusa.com
|
SHOP