На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
46.26. Электрон находится в одномерном потенциальном ящике шириной l. Определить среднее значение координаты x электрона (0<х<l).
46.27. Используя выражение энергии En=π^2h2n2/(2ml2) частицы, находящейся в потенциальном ящике, получить приближенное выражение энергии: 1) гармонического осциллятора; 2) водородоподобного атома. Сравнить полученные результаты с истинными значениями энергий.
46.28. Считая, что нуклоны в ядре находятся в трехмерном потенциальном ящике кубической нормы с линейными размерами l=10 фм, оценить низший энергетический уровень нуклонов в ядре.
46.29. Определить из условия нормировки коэффициент C собственной ψ-функции, описывающей состояние электрона в двухмерном бесконечно глубоком потенциальном ящике со сторонами l2, l2
46.30. Электрон находится в основном состоянии в двухмерном квадратном бесконечно глубоком потенциальном ящике со стороной l. Определить вероятность W нахождения электрона в области, ограниченной квадратом, который равноудален от стенок ящика и площадь которого составляет 1/4 площади ящика.
46.31. Определить из условия нормировки коэффициент собственной ψ-функции описывающей состояние электрона в трехмерном потенциальном бесконечно глубоком ящике со сторонами l1 l2 l3.
46.32. Написать уравнение Шредингера для электрона с энергией E движущегося в положительном направлении оси X для областей I и II (см. рис. 46.1), если на границе этих областей имеется низкий потенциальный барьер высотой U.
46.33. Написать решения уравнений Шредингера (см. предыдущую задачу) для областей I и II. Какой смысл имеют коэффициенты А1 и В1 для ψI(x) и А2 и В2 для ψII(x)? Чему равен коэффициент B2?
46.34. Зная решение уравнений Шредингера для областей I и II потенциального барьера ψ1(х)=A1e^ikx + B1e-ikx, ψII(х)=A2eikx, определить из условий непрерывности ψ-функций и их первых производных на границе барьера отношение амплитуд вероятности B1/A1, A2/A1
46.35. Зная отношение амплитуд вероятности B1/A1=(k1-k2)/(k1+k2) для волны, отраженной от барьера, и A2/A1=2k/(k1+k2) для проходящей волны, найти выражение для коэффициента отражения ρ и коэффициента прохождения т.
46.36 Считая выражение для коэффициента отражения ρ от потенциального барьера и коэффициента прохождения τ известными, показать, что ρ+τ=1.
46.37. Электрон с энергией Е=25 эВ встречает на своем пути потенциальный барьер высотой U=9 эВ (см. рис. 46.1). Определить коэффициент преломления n волн де Бройля на границе барьера.
46.38. Определить коэффициент преломления n волн де Бройля для протонов на границе потенциальной ступени (рис. 46.5). Кинетическая энергия протонов равна 16 эВ. а высота U потенциальной ступени равна 9 эВ.
46.39. Электрон обладает энергией E=10 эВ. Определить, во сколько раз изменятся его скорость v, длина волны де Бройля λ и фазовая скорость при прохождении через потенциальный барьер (см. рис. 46.1) высотой U=6 эВ.
46.40 Протон с энергией E=1 МэВ изменил при прохождении потенциального барьера дебройлевскую длину волны на 1%. Определить высоту U потенциального барьера.
46.41. На пути электрона с дебройлевской длиной волны λ1=0,1 нм находится потенциальный барьер высотой U=20 эВ. Определить длину волны де Бройля λ2 после прохождения барьера.
46.42 Электрон с энергией E=100 эВ попадает на потенциальный барьер высотой U=64 эВ. Определить вероятность W того, что электрон отразится от барьера.
46.43. Найти приближенное выражение коэффициента отражения ρ от очень низкого потенциального барьера (U<E).
46.44. Коэффициент отражения ρ протона от потенциального барьера равен 2,5*10^-5. Определить, какой процент составляет высота U барьера от кинетической энергии T падающих на барьер протонов.
46.45. Вывести формулу, связывающую коэффициент преломления n волн де Бройля на границе низкого потенциального барьера и коэффициент отражения ρ от него.
46.46. Определить показатель преломления n волн де Бройля при прохождении частицей потенциального барьера с коэффициентом отражения ρ=0,5.
46.47. При каком отношении высоты U потенциального барьера и энергии E электрона, падающего на барьер, коэффициент отражения ρ=0,5?
46.48. Электрон с энергией Е=10 эВ падает на потенциальный барьер. Определить высоту U барьера, при которой показатель преломления n волн де Бройля и коэффициент отражения ρ численно совпадают.
46.49. Кинетическая энергия T электрона в два раза превышает высоту U потенциального барьера. Определить коэффициент отражения ρ и коэффициент прохождения τ электронов на границе барьера.
46.50. Коэффициент прохождения τ электронов через низкий потенциальный барьер равен коэффициенту отражения ρ. Определить, во сколько раз кинетическая энергия T электронов больше высоты U потенциального барьера.
online-tusa.com
|
SHOP