На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
29.15 Солнце, находясь вблизи зенита, создает на горизонтальной поверхности освещенность E=0,1 Млк. Диаметр Солнца виден под углом α=32'. Определить видимую яркость L Солнца.
29.16 Длина l раскаленной добела металлической нити равна 30 см, диаметр d=0,2 мм. Сила света I нити в перпендикулярном ей направлении равна 24 кд. Определить яркость L нити.
29.17 Яркость L светящегося куба одинакова во всех направлениях и равна 5 ккд/м2. Ребро a куба равно 20 см. В каком направлении сила света I куба максимальна? Определить максимальную силу света Imax куба.
29.18 Светящийся конус имеет одинаковую во всех направлениях яркость B=2 ккд/м^2. Основание конуса не светится. Диаметр d основания равен 20 см, высота h=15 см. Определить силу света I конуса в направлениях: 1) вдоль оси; 2) перпендикулярном оси.
29.19 На высоте h=1 м над горизонтальной плоскостью параллельно ей расположен небольшой светящийся диск. Сила света I0 диска в направлении его оси равна 100 кд. Принимая диск за точечный источник с косинусным распределением силы света, найти освещенность E горизонтальной плоскости в точке A, удаленной на расстояние r=3 м от точки, расположенной под центром диска.
29.20 На какой высоте h над горизонтальной плоскостью (см. предыдущую задачу) нужно поместить светящийся диск, чтобы освещенность в точке А была максимальной?
29.21 Определить освещенность E, светимость M и яркость L киноэкрана, равномерно рассеивающего свет во всех направлениях, если световой поток Ф, падающий на экран из объектива киноаппарата (без киноленты), равен 1,75 клм. Размер экрана 5x3,6 м, коэффициент отражения ρ=0,75.
29.22 На какой высоте h нужно повесить лампочку силой света I=10 кд над листом матовой белой бумаги, чтобы яркость L бумаги была равна 1 кд/м2, если коэффициент отражения ρ бумаги равен 0,8?
29.23 Освещенность E поверхности, покрытой слоем сажи, равна 150 лк, яркость L одинакова во всех направлениях и равна 1 кд/м2. Определить коэффициент отражения ρ сажи.
29 пример 1. Прожектор ближнего освещения дает пучок света в виде усеченного конуса с углом раствора 2ϑ=40°. Световой поток Ф прожектора равен 80 клм. Допуская, что световой поток распределен внутри конуса равномерно, определить силу света I прожектора.
29 пример 2. Люминесцентная цилиндрическая лампа диаметром d=2,5 см и длиной l=40 см создает на расстоянии r=5 м в направлении, перпендикулярном оси лампы, освещенность E=2 лк. Принимая лампу за косинусный излучатель, определить: 1) силу света I в данном направлении; 2) яркость L; 3) светимость M лампы.
28.1 Два плоских прямоугольных зеркала образуют двугранный угол φ=179°. На расстоянии l=10 см от линии соприкосновения зеркал и на одинаковом расстоянии от каждого зеркала находится точечный источник света. Определить расстояние d между мнимыми изображениями источника в зеркалах.
28.2. На сферическое зеркало падает луч света. Найти построением ход луча после отражения в двух случаях: а) от вогнутого зеркала (рис. 28.4, а); б) от выпуклого зеркала (рис. 28.4, б). На рисунке: P-полюс зеркала; O-оптический центр.
28.3. Вогнутое сферическое зеркало дает на экране изображение предмета, увеличенное в Г=4 раза. Расстояние а от предмета до зеркала равно 25 см. Определить радиус R кривизны зеркала.
28.4 Фокусное расстояние f вогнутого зеркала равно 15 см. Зеркало дает действительное изображение предмета, уменьшенное в три раза. Определить расстояние a от предмета до зеркала.
28.5 На рис. 28.5, a, б указаны положения главной оптической оси MN сферического зеркала, светящейся точки S и ее изображения S'. Найти построением положения оптического центра O зеркала, его полюса P и главного фокуса F. Определить, вогнутым или выпуклым является данное зеркало. Будет ли изображение действительным или мнимым?
28.6. Вогнутое зеркало дает на экране изображение Солнца в виде кружка диаметром d=28 мм. Диаметр Солнца на небе в угловой мере β=32. Определить радиус R кривизны зеркала.
28.7 Радиус R кривизны выпуклого зеркала равен 50 см. Предмет высотой h=15 см находится на расстоянии a, равном 1 м, от зеркала. Определить расстояние b от зеркала до изображения и его высоту H.
28.8. На рис. 28.6 a, б указаны положения главной оптической оси MN сферического зеркала и ход луча 1. Построить ход луча 2 после отражения его от зеркала.
28.9. На столе лежит лист бумаги. Луч света, падающий на бумагу под углом α=30°, дает на ней светлое пятно. Насколько сместится это пятно, если на бумагу положить плоскопараллельную стеклянную пластину толщиной d=5 см?
28.10 Луч падает под углом ε=60° на стеклянную пластинку толщиной d=30 мм. Определить боковое смещение Δx луча после выхода из пластинки.
28.11 Пучок параллельных лучей падает на толстую стеклянную пластину под углом ε=60°, и преломляясь переходит в стекло. Ширина a пучка в воздухе равна 10 см. Определить ширину b пучка в стекле.
28.12 Луч света переходит из среды с показателем преломления n1 в среду с показателем преломления n2. Показать, что если угол между отраженным и преломленным лучами равен π/2, то выполняется условие tg ε1=n2/n1 (ε1-угол падения).
28.13 Луч света падает на грань призмы с показателем преломления n под малым углом. Показать, что если преломляющий угол θ призмы мал, то угол отклонения σ лучей не зависит от угла падения и равен θ(n-1).
28.14 На стеклянную призму с преломляющим углом θ=60° падает луч света. Определить показатель преломления n стекла, если при симметричном ходе луча в призме угол отклонения σ=40°.
online-tusa.com
|
SHOP