На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
50.70. Оценить термический коэффициент расширения α твердого тела, считая, что коэффициент ангармоничности γ~β/(2r0). При оценке принять: модуль Юнга E=100 ГПа, межатомное расстояние r0=0,3 нм.
50.71. Вычислить коэффициент ангармоничности γ для железа, если температурный коэффициент линейного расширения α=1,2*10^-5 К-1, межатомное расстояние r0=0,25 нм, модуль Юнга E=200 ГПа.
50.72. Определить, на сколько процентов изменится межатомное расстояние в твердом теле (при нагревании его до T=400 К) по сравнению с равновесным расстоянием r0=0,3 нм, отвечающим минимуму потенциальной энергии. При расчетах принять γ=β/(2r0), модуль Юнга E=10 ГПа.
50.73. Оценить термический коэффициент расширения α твердого тела, обусловленного фононным давлением (в области T << θD). При оценке принять: плотность ρ кристалла равной 10^4 кг/м3, модуль Юнга E=100 ГПа, относительную атомную массу Ar=60
Пример 1. Определить число n узлов, приходящихся на одну элементарную ячейку в гранецентрированной кубической решетке.
Пример 2. Определить параметр а решетки и расстояние d между ближайшими соседними атомами кристалла кальция (решетка гранецентрированная кубической сингонии). Плотность ρ кристалла кальция равна 1,55*10^3 кг/м3.
Пример 3. Написать индексы направления прямой, проходящей через узлы 100 и 001 кубической примитивной решетки.
Пример 4. Написать индексы Миллера для плоскости, содержащей узлы с индексами 200, 010 и 001. Решетка кубическая,примитивная
49.1. Сколько атомов приходится на одну элементарную ячейку: 1) примитивной решетки кубической сингонии; 2) объемно-центрированной решетки ромбической сингонии; 3) гранецентрированной решетки кубической сингонии; 4) базоцентрированной решетки ромбической сингонии; 5) примитивной решетки гексагональной сингонии; 6) гексагональной структуры с плотной упаковкой.
49.2. Определить число элементарных ячеек кристалла объемом V=1 м^3: 1) хлористого цезия (решетка объемно-центрированная кубической сингонии); 2) меди (решетка гранецентрированная кубической сингонии); 3) кобальта, имеющего гексагональную структуру с плотной упаковкой.
49.3 Найти плотность ρ кристалла неона (при 20 К), если известно, что решетка гранецентрированная кубической сингонии. Постоянная a решетки при той же температуре равна 0,452 нм.
49.4. Найти плотность ρ кристалла стронция, если известно, что решетка гранецентрированная кубической сингонии, а расстояние d между ближайшими соседними атомами равно 0,43 нм.
49.5 Определить относительную атомную массу Ar кристалла, если известно, что расстояние d между ближайшими соседними атомами равно 0,304 нм. Решетка объемно-центрированная кубической сингонии. Плотность ρ кристалла равна 534 кг/м^3.
49.6. Найти постоянную a решетки и расстояние d между ближайшими соседними атомами кристалла: 1) алюминия (решетка гранецентрированная кубической сингонии); 2) вольфрама (решетка объемно-центрированная кубической сингонии).
49.7. Используя метод упаковки шаров, найти отношение c/a параметров в гексагональной решетке с плотнейшей упаковкой. Указать причины отклонения этой величины в реальном кристалле от вычисленного.
49.8. Определить постоянное a и c решетки кристалла магния, который представляет собой гексагональную структуру с плотной упаковкой. Плотность ρ кристаллического магния равна 1,74*10^3 кг/м3.
49.9 Вычислить постоянную a решетки кристалла бериллия, который представляет собой гексагональную структуру с плотной упаковкой. Параметр a решетки равен 0,359 нм. Плотность ρ кристалла бериллия равна 1,82*10^3 кг/м3.
49.10 Найти плотность ρ кристалла гелия (при температуре T=2 К), который представляет собой гексагональную структуру с плотной упаковкой. Постоянная a решетки, определенная при той же температуре, равна 0,357 нм.
49.11. Определить индексы узлов, отмеченных на рис. 49.7 буквами A, B, C, D.
49.12. Написать индексы направления прямой, проходящей в кубической решетке через начало координат и узел с кристаллографическими индексами, в двух случаях: 1) 242; 2) 112.
49.13. Найти индексы направлений прямых AB, CD, KL, изображенных на рис. 49.8, a, б, в.
49.14. Написать индексы направления прямой, проходящей через два узла с кристаллографическими индексами (в двух случаях): 1) 123 и 321 2) 121 и 201
49.15 Вычислить период l идентичности вдоль прямой [111] в решетке кристалла NaCl, если плотность ρ кристалла равна 2,17*10^3 кг/м3.
49.16. Вычислить угол φ между двумя направлениями в кубической решетке кристалла, которые заданы кристаллографическими индексами 110 и 111
49.17. Написать индексы Миллера для плоскостей в примитивной кубической решетке, изображенных на рис. 49.9, а-е.
online-tusa.com
|
SHOP