На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по физике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

Число записей в разделе: 6529

627. Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность Δr радиуса r электронной орбиты и неопределенность Δp импульса p электрона на такой орбите соответственно связаны следующим образом: Δr=r и Δp=p. Используя эти связи, а также соотношение неопределенностей, найти значение радиуса электронной орбиты, соответствующего минимальной энергии электрона в атоме водорода.

628. Моноэнергетический пучок электронов высвечивает в центре экрана электронно-лучевой трубки пятно радиусом r=10^-3 см. Пользуясь соотношением неопределенностей, найти, во сколько раз неопределенность Δx координаты электрона на экране в направлении, перпендикулярном оси трубки, меньше размера r пятна. Длину L электронно-лучевой трубки принять равной 0,50 м, а ускоряющее электрон напряжение U-равным 20 кВ.

629. Среднее время жизни Δt атома в возбужденном состоянии составляет около 10^-8 c. При переходе атома в нормальное состояние испускается фотон, средняя длина волны <λ> которого равна 400 нм. Оценить относительную ширину Δλ/λ излучаемой спектральной линии, если не происходит уширения линии за счет других процессов.

630. Для приближенной оценки минимальной энергии электрона в атоме водорода можно предположить, что неопределенность Δr радиуса r электронной орбиты и неопределенность Δp импульса p электрона на такой орбите соответственно связаны следующим образом: Δr=r и Δp=p. Используя эти связи, а также соотношение неопределенностей, определить минимальное значение энергии Tmin электрона в атоме водорода.

631. Частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Найти отношение разности ΔEn, n+1 соседних энергетических уровней к энергии En частицы в трех случаях: 1) n=2; 2) n=5; 3) n→∞.

632. Электрон находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l=0,1 нм. Определить в электрон-вольтах наименьшую разность энергетических уровней электрона.

633. Частица в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l находится в возбужденном состоянии (n=3). Определить, в каких точках интервала 0<x<l плотность вероятности нахождения частицы имеет максимальное и минимальное значения.

634. В прямоугольной потенциальной яме шириной l с абсолютно непроницаемыми стенками (0<x<l) находится частица в основном состоянии. Найти вероятность w местонахождения этой частицы в области ^1/4 ℓ <x< 3/4 ℓ.

635. Частица в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике находится в основном состоянии. Какова вероятность w обнаружения частицы в крайней четверти ящика?

636. Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид ψ(r)=Ae^-r/a0, где А-некоторая постоянная; a0-первый боровский радиус. Найти для основного состояния атома водорода наиболее вероятное расстояние электрона от ядра.

637. Частица находится в основном состоянии в прямоугольной яме шириной l с абсолютно непроницаемыми стенками. Во сколько раз отличаются вероятности местонахождения частицы: w1-в крайней трети и w2-в крайней четверти ящика?

638. Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид ψ(r)=Ae^-r/a0, где А-некоторая постоянная; a0-первый боровский радиус. Найти для основного состояния атома водорода среднее значение <F> кулоновской силы.

639. Электрон находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике шириной l. В каких точках в интервале 0 < x < l плотности вероятности нахождения электрона на втором и третьем энергетических уровнях одинаковы? Вычислить плотность вероятности для этих точек. Решение пояснить графиком.

640. Волновая функция, описывающая движение электрона в основном состоянии атома водорода, имеет вид ψ(r)=Ae^-r/a0, где А-некоторая постоянная; a0-первый боровский радиус. Найти для основного состояния атома водорода среднее значение <П> потенциальной энергии.

641. Найти период полураспада T1/2 радиоактивного изотопа, если его активность за время t=10 сут уменьшилась на 24% по сравнению с первоначальной.

642. Определить, какая доля радиоактивного изотопа ^225 89Ac распадается в течение времени t=6 сут.

643. Активность A некоторого изотопа за время t=10 сут уменьшилась на 20%. Определить период полураспада T1/2 этого изотопа.

644. Определить массу m изотопа ^131 53I, имеющего активность A=37 ГБк.

645. Найти среднюю продолжительность жизни τ атома радиоактивного изотопа кобальта ^60 27Co.

646. Счетчик α-частиц, установленный вблизи радиоактивного изотопа, при первом измерении регистрировал N1=1400 частиц в минуту, а через время t=4 ч-только N2=400. Определить период полураспада T1/2 изотопа.

647. Во сколько раз уменьшится активность изотопа ^32 15P через время t=20 сут?

648. На сколько процентов уменьшится активность изотопа иридия ^192 77Ir за время t=15 сут?

649. Определить число N ядер, распадающихся в течение времени: 1) t1=1 мин; 2) t2=5 сут. в радиоактивном изотопе фосфора ^32 15P массой m=1 мг.

650. Из каждого миллиона атомов радиоактивного изотопа каждую секунду распадается 200 атомов. Определить период полураспада T1/2 изотопа.

651. Определить количество теплоты Q, выделяющейся при распаде радона активностью A=3,7*10^10 Бк за время t=20 мин. Кинетическая энергия T вылетающей из радона α-частицы равна 5,5 МэВ.

online-tusa.com | SHOP